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Chapter 1 
An introduction to quantitative risk analysis1 

Introduction 
In Volume 1 of this Handbook we stated that no single method of import risk assessment 
has proven applicable in all situations, and different methods may be appropriate in 
different circumstances2. In qualitative assessments, the likelihood the release and 
subsequent exposure to a hazard and the magnitude of the resulting consequences are 
expressed using non-numerical terms such as high, medium, low or negligible, and the 
qualitative approach has so far proved suitable for the majority of import risk assessments. 
However, in some circumstances it may be desirable to undertake a quantitative analysis, 
for example, to gain further insights into a particular problem, to identify critical steps or to 
compare sanitary measures. 

The terms ‘parameter’, ‘variable’, ‘input’ and are often used interchangeably in quantitative 
risk assessments. In this Handbook, these terms are used as follows: 

– Parameter 

In experimental statistics the term parameter represents a numerical descriptive measure 
that characterises a population, for example the population mean (), the population 
standard deviation () and the binomial proportion (p). In spread sheet computer 
software, it is often used to represent the arguments of mathematical, statistical or 
probability distribution functions such as the values required to define the shape of a 
Beta distribution or the mean and standard deviation of a normal distribution.  

– Variable 

A variable is any characteristic that has a different value for different subjects or objects. 
If it can take on a different value as a result of a random process it is called a random 
variable. It can either be discrete, where it can only take on a limited number of values, 
or continuous, where it can take on any value within a given range. Examples of discrete 
variables include the number of infected animals, the number of test positive animals or 
the number of piglets in a litter, while examples of continuous variables include 
bodyweight or blood copper levels. 

– Inputs 

An input is any information that is fed into a model. As a result parameters and 
variables, together with data and distributions, can be considered as inputs as they 
provide information that is used in a quantitative risk assessment model. 

– Model  

A model is a simplified representation of the real world. Most models are symbolic 
because symbols represent properties of the system. In this handbook, a ‘model’ is a 
representation of an importation scenario in graphical or mathematical form where 

                                                 
1 The general reference for this chapter is Vose D. (2000). – Risk Analysis, A Quantitative Guide. John Wiley & Sons 
Chichester. 

2 Terrestrial Animal Health Code, Article 1.3.1.1 
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equations are used to simulate the biological processes under study and the impact of 
risk management options. 

– Quantitative risk assessment 

A quantitative risk assessment is a mathematical model where the inputs and outputs are 
expressed numerically. In its simplest form, commonly referred to as a deterministic or 
point estimate analysis, both the inputs and outputs are expressed as single numbers or 
point values. These may represent a ‘best guess’, the ‘average’ or ‘expected case’ or 
perhaps the ‘worst case’. When one wants to determine the impact of one or more of 
the input values on the output, one simply substitutes a new value into the model. This 
is effectively a ‘what if’, or scenario, analysis. For simple models with few inputs, this 
type of analysis can be easily undertaken using a calculator. 

For more complex models, or in situations where one has more data to work with, 
probabilistic risk assessments are preferable. In these, inputs are described as probability 
distributions and a computer is essential for constructing the risk assessment model. 

Deterministic (point estimate) risk assessment 
Quantification of risk begins with considering an experiment, or trial with only two 
possible outcomes: success or failure. The trial may be repeated a number of times. For 
example, a trial may be a single embryo transfer from an infected animal to a susceptible 
recipient. A ‘success’ in this case would be where the infection is transmitted while a 
‘failure’ would be a transfer where infection is not transmitted. If we observe no successes 
after ten transfers (trials) we may begin to suspect that the probability of transmitting 
infection by embryo transfer is low. As more transfers are undertaken without transmitting 
infection, the more confident we become that transmission is unlikely. This is shown in 
Table I, where confidence intervals3 have been determined by consulting the statistical 
tables presented in Appendix 1. 

Table I 
Probability of transmitting infection following embryo transfer from a viraemic 
donor 

Number of 
transfers (n) 

Number of 
infected 

recipients I 

Probability of transmitting 
infection 






  100

N

r
pt

 
Lower 95% 
confidence 

limit 

Upper 95% 
confidence 

limit 

10 0 0.00 0.00 30.85 
20 0 0.00 0.00 16.84 
30 0 0.00 0.00 11.57 
40 0 0.00 0.00 8.81 
100 0 0.00 0.00 3.62 
1,000 0 0.00 0.00 0.37 

If 100 experimental transfers were undertaken without transmitting infection, we could 
reasonably conclude, using the upper 95th percent confidence interval, that the probability 

                                                 
3 A confidence interval is a range of numbers believed to include an unknown quantity with a specified level of 
confidence. For example, if we weighed 10 sheep we could calculate their average weight and the associated confidence 
intervals. If the average weight is 50 kg and the 95% confidence interval is   2.5 kg, this indicates that we could be 95% 
confident that the true average weight of all sheep in the flock lies somewhere within the interval bounded by 47.5 kg and 
52.5 kg 
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of transmitting infection for each embryo transferred from an infected donor is ‘at worst’ 
3.62%. 

If we plan on undertaking an embryo transfer program we might like to estimate the 
probability that at least one recipient becomes infected or, alternatively, the average 
number of infected recipients we could expect. 

To calculate the probability that at least one recipient becomes infected we proceed as 
follows: 

– the probability of transmitting infection (a success) is pt the probability of not 
transmitting infection (a failure) is 1- pt 

– the probability that none of the recipients become infected is (1- pt)
e, where e refers to 

the number of recipients (trials) 

– so, the probability that at least one recipient becomes infected is 1-(1- pt)
e 

– the probability is expressed in mathematical notation as P(x ≥ 1), where P refers to 
probability and x refers to the outcome, that is, an infected recipient 

– and the final equation is then written as: 

 P(x ≥ 1) = 1-(1- pt)
e Equation 1 

To calculate the expected number of infected recipients we multiply the probability of 
transmitting infection pt, by the number of recipients e: 

 expected number of infected recipients = ept   Equation 2 

If we assume a situation where the probability of transmission equals 3.62% (n=100) and 
the number of embryos transferred equals 30, we could determine the probability that at 
least one recipient becomes infected (Table II). For simplicity, we will assume that each 
recipient is implanted with only one embryo and that each donor produces a single 
transferable embryo. As a result the number of recipients equals 30. 

 P(x ≥ 1) = 1-(1-0.0362)30 = 0.6692 = 66.92% 
 expected number of infected recipients = 300362.0   = 1.086 

This scenario is essentially a ‘worst case’ as we have assumed that all the donors are 
infected. If we had some information on the prevalence of disease among the donors we 
could incorporate this into the model. Suppose a survey had been recently undertaken in a 
donor flock of sheep and 5 I animals out of 100 (n) tested were found to be infected. By 
consulting the statistical tables in Appendix 4 we could estimate that the true disease 
prevalence, with a 95% level of confidence, is likely to be between 1.64% (lower 95% 
confidence limit) and 11.28% (upper 95% upper confidence limit) with an expected value 
of 5%. We could include these estimates of disease prevalence in the model to determine 
three possible outcomes (Table II) using the following formulae: 

 P(x ≥ 1) =  e

tpp  11  Equation 3 

 expected number of infected recipients = epp t   Equation 4 

where: p = prevalence, 
 pt = probability of transmitting infection and 
 e = number of recipients. 
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Table II 
Probability of transmitting infection to at least one recipient and the expected 
number of infected recipients if thirty embryos are transferred 

Scenario p = prevalence 
in the flock of 

origin 

pt = probability of 
transmitting 
infection via 

embryo transfer 

Probability 
≥ 1 recipient 

infected 
(Equation 3)

Expected number of 
infected recipients 

(Equation 4) 

Minimum 1.64% 
(lower 95% CL*) 

3.62% 
(upper 95% CL) 

1.77% 0.017 
(17 out of every 1,000) 

Most likely 5% 
(expected value) 

5.28% 0.054 
(54 out of every 1,000) 

Worst case 11.28% 
(upper 95% CL) 

11.55% 0.122 
(122 out of every 1,000) 

* CL = confidence limit 

After considering the probabilities that one or more recipients would become infected, we 
might consider that the likelihood is too high and that some risk management measure is 
desirable. So, we might then decide to test the donors and discard any that are positive. If 
we test a potential donor, chosen at random, we could calculate the probability that it is 
infected D+, given that it is test negative T-. This is a conditional probability, which is 
expressed as   TDP . For a perfect test, this probability would be zero. However, since all 

tests are imperfect (with a sensitivity4 of less than 1), we can expect that the test will fail to 
detect some infected animals. In addition, some uninfected animals will be incorrectly 
classified as positive, since the specificity5 will also be less than 1. In these circumstances 
we calculate the   TDP , by firstly determining the predictive value of a negative test NPV 

as outlined in Chapter 4 and then calculate its complementary probability (1-NPV). This 
represents the prevalence of infection within the group of donor animals we accept. That 
is, the prevalence of infection amongst the test negative animals as a result of discarding 
test positive animals. From Equation 40 in Chapter 4 the NPV is calculated as: 

    
   SppSep

pSp
TDPNPV




 

11

1
 Equation 5 

where: p = the prevalence of infection in the flock of sheep 
 Se = test sensitivity 
 Sp = test specificity 

So the prevalence of infection within the test negative group is calculated as: 
   NPVTDP  1  Equation 6 

If we use a test with a sensitivity of 90% and specificity of 99% and reject any positive 
animals, we could calculate the probability of infection for a test negative animal by 
substituting these values into Equation 6 (Table III): 

                                                 
4 Sensitivity of a test is its ability to correctly classify an infected animal as test positive. It is calculated as the 

proportion of infected animals that yield a positive test result 





  DTP  

5 Specificity of a test is its ability to correctly classify an uninfected animal as test negative. It is calculated as the 

proportion of uninfected animals that yield a negative test result 





  DTP  
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Table III 
Prevalence of infection among test negative donors 

Scenario p = prevalence in the 
flock of origin 

Se = test 
sensitivity 

Sp = test 
specificity 

Prevalence among 
test negative donors 

(Equation 6) 

Minimum 1.64% (lower 95% CL*) 

90% 99% 

0.17% 
Most likely 5% (expected value) 0.53% 
Worst case 11.28% (upper 95% CL) 1.27% 

* CL = confidence limit 

Since 1-NPV is the prevalence of infection within the test negative group, we can replace 
‘p’ in Equation 3 with ‘1-NPV’ to determine the probability of transmitting infection to at 
least one recipient: 

     e

tpNPVRP  1111  Equation 7 
where: R+ = infected recipient 
and the expected number of infected recipients: 
 epNPV t  )1(  Equation 8 

The results of these calculations are shown in Table IV. 

Table IV 
Probability of transmitting infection to at least one recipient and the expected 
number of infected recipients if thirty embryos are transferred 

Scenario 
(1-NPV) = prevalence 

in the group of test 
negative donors 
(from Table III) 

Pt = probability 
of transmitting 

infection via 
ET 

Probability 
≥ 1 recipient 

infected 
(Equation 7)

Expected number of 
infected recipients 

(Equation 8) 

Minimum 0.17% 

3.62% 
(upper 95% CL*)

0.18% 0.002 
(2 out of every 1,000) 

Most 
likely 

0.53% 0.57% 0.006 
(6 out of every 1,000) 

Worst case 1.27% 1.37% 0.014 
(14 out of every 1,000)

* CL = confidence limit 

So, by making use of a statistical table and a calculator, we have been able to undertake a 
simple deterministic or point estimate analysis that has given us a very good idea of the 
risks we face. We could go on adding to this model, for example by including an estimate 
of the probability that a randomly chosen flock is actually infected and the effect of 
quarantining and testing recipients to screen out positive animals. 

Probabilistic risk assessment (Monte Carlo simulation) 
The embryo transfer model under discussion could be refined further. Just as we have 
estimated the probability of transmitting infection by embryo transfer, and the prevalence 
of infection within the flock of origin, we could include confidence intervals of the 
estimates of sensitivity, specificity and the probability that the flock of origin is infected. 
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However, as the number of such variables6 increases there will be a rapid escalation in the 
number of potential combinations or ‘what if’ scenarios. For example, if we had four 
variables, each with a mean and upper and lower 95th percent confidence limits, we would 
have 34, or 81 possible scenarios. Such an approach has significant drawbacks. It can 
rapidly become impractical to analyse the results. In addition there is no weighting for each 
of the values chosen. For example, our ‘best guess’ might be far more likely to happen than 
the ‘worst case’. 

If we had information about the range of values and the likelihood of each value, we could 
assign a probability distribution to each variable, which we can now describe as random 
variables as they can take on a different value as a result of a random process. In our 
embryo transfer example we could use the Beta distribution (Chapter 4) to define a 
probability distribution for each input variable (Fig. 1). Such a model is called a stochastic 
model and we can calculate the combined impact of the variation in each of the model’s 
input distributions to determine a probability distribution of the possible model outcomes. 
The simplest way to do this is to perform a simulation. This involves randomly sampling 
values from each distribution and combining the values generated, according to the 
mathematical logic of the model, to produce a result for that particular scenario. This 
process is repeated many times and the results from each scenario, which are also known as 
iterations, trials or realisations, are combined to produce a probability distribution of 
possible model outcomes. 

Throughout this text, probability distributions will be described in terms of functions used 
in the risk assessment computer software @RISK7 and the spreadsheet software Microsoft 
Excel8. For example, the notation Binomial( ) is an @RISK function while BINOMDIST( ) 
is a Microsoft Excel function and is distinguished by capital letters. 

a) b) 
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a) a Beta distribution of the probability of transmitting infection by ET if 100 transfers from infected donors to 

susceptible recipients were undertaken without transmitting infection: Beta (0+1,100-0+1) 

b) a Beta distribution of the prevalence of infection if 5 infected animals were detected in a sample of 100: 
Beta(5+1,100-5+1) 

Figure 1 
An example of two probability distributions that could be assigned to the input 
variables in the embryo transfer quantitative risk assessment example 

An ascending cumulative frequency plot (Fig. 2a) is often used to display the results of a 
simulation. It shows the probability of being equal to or less than a certain value.  

                                                 
6 A variable is any characteristic that has a different value for different subjects or objects 
7 Palisade Corporation, Newfield, New York 
8 Microsoft Inc., Redmond, Washington 
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For example, we could report the results as follows, by reading from the 95th cumulative 
percentile: 

In 95% of iterations, the probability of transmitting infection to at least one recipient is equal to or less than 
5.4% if test positive donors are not rejected and less than 0.61% if test positive donors are rejected. 

Alternatively, we might choose to report the median result (50th percentile) and the 
associated 95% confidence intervals. In the case of testing and rejecting positive donors the 
median is 0.12% with lower and upper 95% confidence limits of 0.004% and 0.8% 
respectively. It is important to note that the 95th percentile does not represent the upper 
95% confidence limit. The upper and lower 95% confidence limits about the 50th 
percentile are represented by the 97.5th and 2.5th percentiles respectively (Fig. 2b). The 
area under the curve embraced by these percentiles is equal to 95% of the total area, which 
is the relevant area for the 95% confidence interval. 
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a) with and without testing donors 

b) percentiles for the probability without testing 

Figure 2 
Ascending cumulative frequency plots of the probability of transmitting infection to 
at least one recipient if thirty embryos are transferred 

Sampling values from a probability distribution 
Sampling values from probability distributions is most commonly undertaken by either 
Monte Carlo or Latin hypercube sampling. The Monte Carlo method is based on simple 
random sampling from the entire distribution, which represents the sampling frame for 
each iteration. It is sampling with replacement, as it is possible for the same values to be 
selected more than once. Latin hypercube sampling, on the other hand, involves stratified 
sampling without replacement. The range of the distribution is divided up into a number of 
intervals, equal to the number of iterations to be performed and a simple random sample is 
then chosen from within each interval. Each interval is only selected once during a 
simulation. As a result, Latin hypercube sampling ensures that values from the entire range 
of the distribution will be sampled proportional to the probability density of the 
distribution. Fewer samples are usually required to reproduce the probability distribution so 
it is more efficient than Monte Carlo sampling for the same number of iterations. It is 
generally the preferred method of numerical simulation since fewer iterations are required 
for a particular level of accuracy. 

Differentiating variability and uncertainty 
The way in which variability and uncertainty have been described by risk analysts has led to 
a degree of confusion. To understand what is meant by these terms, it is important to 
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appreciate that risk assessment is essentially a tool aimed at predicting the probability of an 
outcome of a particular action or actions. For example, we might want to predict the likely 
height of a person chosen at random. We know from our own observations that there is a 
great deal of natural variation among individuals in the population. While we might have a 
good ‘feel’ for its range and what the average might be, it is only by measuring several 
people that we can begin to make some accurate predictions about the heights of people in 
the general population. As more measurements are collected, more knowledge is acquired. 
We can begin to describe the variation in people’s heights with increasing certainty, 
enabling us to be more and more confident in our predictions. If we measured everybody 
in the population, we would have a perfect understanding and we would be able to state 
exactly what the population parameters, such as the average height and standard deviation 
(a measure of the amount of variation that exits), were. Obviously, this is impractical and 
we need to achieve a balance between acquiring perfect knowledge and obtaining 
reasonable estimates upon which we can base our predictions with a reasonable level of 
confidence. 

Table V 
A hypothetical example of the height of ten adults chosen at random and the 
associated statistics 

Height in centimetres (xi) 

152.3 118.4 158.5 168.8 163.4 162.9 180.7 99.5 188.9 198.5 

Sample average = ( x ) = n

n

i
ix

1  = 159.2 

Sample standard deviation = s = n

n

i
xix

2

1



 








 = 30.3 

Standard error of the mean = 
x

s = 
n
s  = 9.6 

t value with (n –1) degrees of freedom = 2.262 (from the student’s t distribution) 

Confidence interval = 7.216.9262.2 
x

st  

Upper 95% confidence limit = 
x

stx   = 159.2 + 2.262  9.6 = 180.9 

Lower 95% confidence limit = 5.1376.9262.22.159 
x

stx  

Note: sample statistics are represented by x  (average) and s (standard deviation) while the 
corresponding population parameters are represented by μ and σ 

If we choose ten adults at random and measure them, we can calculate their average height 
and standard deviation. These are actually sample statistics, rather than population parameters 
because we have collected data from a subset of the population only (Table V). If we 
deduce, from previous observations, that height is a normally distributed variable, we could 
use these sample statistics in a normal distribution function (Chapter 3) to enable us to 
describe the distribution of height in the general population and make some predictions. 
However, because of the small sample size we might be concerned that these sample 
statistics do not adequately reflect the population parameters. That is, the population 
parameters are uncertain. As shown in Figure 3 we could develop a sampling distribution 
for both the mean and standard deviation (see Chapter 6 for details).  
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A sampling distribution enables us to capture the uncertainty associated with the estimate 
of a population parameter based on the data we have collected. For example, we can 
calculate confidence intervals, which allow us to determine how confident we can be that 
the true population parameter lies within so many units either side of the corresponding 
sample statistic. Confidence intervals are determined from the area under the curve 
surrounding the average value of the distribution. The 95% confidence interval, for 
example, corresponds to ± 47.5% of the area under the curve either side of the average 
value. In our case the 95% confidence interval is ± 21.7 cm about the sample average of 
159.2 cm (Table V). This indicates that we could be 95% confident that the true population 
average lies somewhere within the interval bounded by 137.5 cm to 180.9 cm. 
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a) hypothetical sampling distributions of the mean  

b) standard deviation 

Figure 3 
Hypothetical sampling distributions of the mean and standard deviation based on 
the data in Table V 

If we randomly select a value from each sample distribution of the mean and standard 
deviation in Figure 3 and insert them into a normal distribution function, plot its graph and 
repeat this exercise a number of times, we could build up a picture of possible distributions 
of height (Fig. 4a). Each of these distributions separately represents a first order distribution, 
while together they form a second order distribution. These distributions, which enable 
variability and uncertainty to be modelled separately, are explored in more detail in 
Chapter 7. The thick black line in Figure 4a represents the hypothetical situation where we 
have perfect knowledge. It can be seen that there is a certain degree of uncertainty 
associated with the small sample size, because there are a number of different possible 
distributions. 

What happens if we increase the sample size to 100 adults? By repeating the exercise just 
outlined, we can see from Figure 4b, that by collecting some additional information we 
have reduced the uncertainty considerably as the range of possible distributions is very 
close to the distribution representing perfect knowledge. We appear to have achieved a 
good balance between acquiring perfect knowledge and obtaining reasonable estimates. 
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a) sample size = 10 

b) sample size = 100 

Figure 4 
A hypothetical normal distribution of the height of adults in Great Britain. 
The thick line represents perfect knowledge where the average height of all adults is 
170 cm with a standard deviation of 30 cm. Each thin line represents one possible 
distribution of height 

Uncertainty, then, may be thought of as a measure of the incompleteness of one’s 
knowledge or information about an unknown quantity. It is important to remember that 
even with perfect knowledge variability still exists. 

As was observed in Volume 1, even though quantitative risk assessments involves 
numbers, they are not necessarily more objective, nor are the results necessarily more 
‘precise’ than with qualitative assessments. Choosing an appropriate model structure, which 
pathways to include or exclude, the level of aggregation or disaggregation, the actual values 
used for each input variable and the type of distribution applied to them, all involve a 
degree of subjectivity. Further, because data are often lacking, models may need to 
incorporate expert opinion, which by its very nature is subjective.  

The means by which this inherent subjectivity is countered in a good risk assessment is by 
ensuring that it is transparent. All the information, data, assumptions, uncertainties, methods 
and results must be comprehensively documented and the discussion and conclusions 
supported by a reasoned and logical discussion. The assessment should be fully referenced 
and subjected to peer review. 

_____________ 
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Chapter 2 
Probability and probability distributions  

Defining probability 
Probability describes the likelihood of something happening and can be expressed using 
words such as low, medium or high, or as a number between 0 and 1 or as a percentage 
between 0% and 100%. Numerically, there are several ways of defining probability 
including: 

Classical probability 
The probability of a particular event is the number of ways the event can occur divided by 
the total number of possible outcomes, for example, the probability of event A, written as 
P(A) is: 

 
outcomesofnumberpossibletotalthe

occurcanAeventwaysofnumberthe
AP   

If we had a flock of 100 lambs consisting of 65 ewe lambs and 35 ram lambs we could 
determine the probability that a lamb chosen at random will be a ram lamb as follows: 
– the event of interest (A) is a ram lamb 
– there are 35 ram lambs so, the number of ways event A can occur is 35 
– the total possible number of outcomes is 100 since there is a total of 100 lambs in the 

flock. 

  35.0
100

35
AP  

Empirical probability (relative frequency) 
The number of events of interest x, that occur in a number of identical and repeatable trials 
n, is expressed as a ratio (fraction or proportion) of the total number of events that 
occurred. Under this definition probability is a measurable property of the physical world 
and can never actually be observed. It is expressed as the limit of the ratio: 

n

x

trialsofnumber

eventsofnumber
  

as n approaches infinity this ratio would converge to: 

p = 
n

x

n
lim



 

Subjective probability 
Under a subjective, or Bayesian, definition of probability, an individual’s state of knowledge 
or degree of belief about the occurrence of an event is captured. For example, a farmer 
may estimate that a particular cow has a 60% chance of calving tonight. As a result, 
probability is a function of the estimator’s knowledge of the event itself. Furthermore, it 
may change over time as new information becomes available. 
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The rules of probability 

Independence 

The probability of event A can be written as  AP . If two events, A and B, are 
independent then the occurrence of event A has no effect on the occurrence of event B 
and vice versa. In these circumstances the probability of event A occurring at the same 
time as, or immediately followed by, event B is the product of these two probabilities, 
which is written as  BAP  : 

     BpApBAP   

This concept can be extended to several events, for example the probability of obtaining a 
head H, followed by a tail T, then a head H, when tossing a coin: 

       HPTPHPHTHP   

Suppose we have a very large herd of cows with a disease prevalence of 30%. The 
probability that a cow chosen at random will be infected can be expressed as   3.0DP . If 
we purchased four cows at random from this herd we might want to determine the 
probability that all four cows are infected. We will assume that the infection is static within 
the herd. That is, there is no transmission occurring. Since the disease status of any cow is 
independent of the status of any other, the probability that all four cows are infected is: 

           DPDPDPDPDDDDP 0081.03.03.03.03.0   

We can extend this calculation as far as we like, for example, to the random selection of 10 
cows. However if we express the calculation as shown above it would become rather 

tedious. A simpler way of writing the probability that all ten cows are infected is  10DP  

which can be generalised to n cows as  nDP  , provided n is much smaller than the herd 
size. 

If we wanted to calculate the probability that there is at least one infected cow among a 
group of size n, selected at random from the herd, then we proceed as follows: 
– the probability that all n cows are infected is  nDP   

– the probability that none of the n cows is infected is   nDP 1  

– the probability that at least one of the n cows is infected is   nDP  11  

Conditional probability 
The probability that B will occur given A has already occurred is a conditional probability, 
which is written as  ABP | . If A and B are independent then the occurrence of B is not 

influenced by the occurrence of A. As a result    BPABP |  and similarly 

   APBAP |  and the probability that event A is followed by event B is simply the 

probability of both events occurring,      BPAPBAP  . If, however, the occurrence 
of B is dependent on A having already occurred, then the probability that event A is 
followed by event B is: 

     ABPAPBAP | . 

Continuing with the cattle example from the previous section, suppose we test one of the 
cows and want to know the probability that it is test positive (T+) given that it is infected 
(D+). This is a conditional probability that the cow is test positive given it is infected, and is 
written as P(T+|D+). It is worth noting that this particular probability is commonly referred 
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to as test sensitivity. To determine the probability that the cow is both infected and test 
positive, we need to multiply these two probabilities together. Assuming that the 
probability that a cow is infected is 0.3 and that we use a test with a sensitivity of 0.9 then: 

       DTPDPTDP | 27.09.03.0   

To calculate the probability that there is at least one test positive and infected cow amongst 
a group of size n selected at random: 

       n
DTPDPTDP   |111  

Mutually exclusive events 
If two or more independent events cannot happen together they are said to be mutually 
exclusive. For example, if we have a flock of sheep consisting of Merinos (M), Suffolks (S) 
and Romneys (R) we could represent their respective probabilities of occurrence using a 
Venn diagram (Fig. 5). The probability of selecting either a Merino or a Suffolk, written as 
 SMP   is: 

     SPMPSMP  65.015.05.0   

 

Merino

P(M)=0.5 Suffolk

P(S)=0.15

Romney 

P(R)=0.35 

 
Figure 5 
A Venn diagram of a flock of sheep consisting of three breeds. Each breed 
represents a mutually exclusive event 

A particular subset of mutually exclusive events is where the events are complementary, 
that is, either one or the other occurs. In such cases       1 BPAPBAP  so that 

   BPAP  1 . An example of a complementary event is pregnancy. An animal is either 
pregnant or it is not. 

Independent events that can occur simultaneously 
Suppose that there has been an outbreak of both foot rot and lice in our flock of sheep, 
each of which can independently affect any of the three breeds of sheep (Fig. 6). This time 
we want to determine the probability that a sheep chosen at random will have either foot 
rot or lice. Since some sheep may have both diseases, we need to adjust the estimate by 
subtracting the probability that some sheep have both foot rot and lice: 

        7.015.06.025.0  FLPFPLPFLP  

where      FPLPFLP  , since L and F are independent. 
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P(L  F)

Lice 

P(L)=0.2

Footrot

P(F)=0.6

 
Figure 6 
A Venn diagram of the probability that sheep within a flock are affected by footrot 
and/or lice 
An assumption is made that the occurrence of footrot does not influence the occurrence of 
the lice and vice versa. That is, the events are independent 

Probability distributions 

Random variables 
A variable is any characteristic that has a different value for different subjects or objects. If 
it can take on a different value as a result of a random process it is called a random variable. 
It can either be discrete, where it can only take on a limited number of values, or 
continuous, where it can take on any value within a given range. Examples of discrete 
variables include the number of infected animals, the number of test positive animals or the 
number of piglets in a litter, while examples of continuous variables include bodyweight or 
blood copper levels.  

Discrete distributions 
If a random variable can only take on a limited number of values it is classified as a discrete 
variable and its corresponding distribution will also be discrete. Suppose we collect some 
data on the size of litters born to sows over a one-year period in a particular pig herd. We 
could summarise the data as has been done in Table VI. In this hypothetical example there 
are 500 observations. From this we could determine the relative frequency of the different 
litter sizes and plot these results on a bar graph (Fig. 7). Since litter size is a discrete variable 
the resulting distribution is a discrete distribution and the relative frequency is the actual 
probability of occurrence. This probability is referred to as the probability mass and all the 
individual probabilities must add up to one. 

If we were interested in determining the probability that a sow has a litter less than or equal 
to a certain value we need to calculate the cumulative probability (Table VI), for example, 
the probability that a sow has a litter size less than or equal to 3. We do this by adding up 
the respective probabilities for each value up to and including 3, that is 0.02+0.08+0.15, to 
determine the cumulative probability of 0.25. 

We could also calculate the expected value or mean of the distribution by multiplying litter 
size by its respective probability and adding all the results together. This is essentially a 
weighted average. 
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Table VI 
Some hypothetical observations on the size of litters born to sows 

Litter 
size ix  

Number of 
litters il  Probability  

n

l
xp i

i   Cumulative probability    


n

i
ii xpxXP

1

1 10 0.02 0.02 
2 40 0.08 0.10 
3 75 0.15 0.25 
4 175 0.35 0.60 
5 125 0.25 0.85 
6 50 0.10 0.95 
7 25 0.05 1.00 
Total n = 500 1.00 – 

Mean (expected value)    


n

i
ii xpx

1
4.23 
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Figure 7 
A hypothetical discrete probability distribution of litter size based on the data in 
Table VI 

Continuous distributions 
If a random variable can take on any value within a given range it is classified as a 
continuous variable and its corresponding distribution will also be continuous. For 
example, the weight of cattle is a continuous variable since the weight of a particular cow 
can be measured to the nearest kilogram, gram, milligram and so on. We can continue this 
process, dividing the scale into smaller and smaller units. In fact, it is infinitely divisible. 

Suppose we weigh 100 cattle and record each one’s weight to the nearest kilogram 
(Table VII). Since weight is on a continuous scale we cannot divide the data into discrete 
values to develop a distribution. Instead, we need to divide the weights into convenient, 
non-overlapping classes with no gaps between each class (Table VIII). The resulting graph 
is a special case of a bar chart called a histogram (Fig. 8). In this case the relative frequency 
is the probability that the weight of a cow falls within a particular class interval. For 
example, from Table VIII the probability that a cow weighs between 460 kg and 480 kg is 
0.19. Alternatively, we might be interested in knowing the probability that the weight of a 
cow is less than or equal to a certain class interval. In this case we need to determine the 
cumulative probability, for example the probability that a cow weighs less than or equal to 
the 460 kg < 480 kg interval. We do this by adding up the respective probabilities in 
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Table VIII for each class up to and including the 460 kg < 480 kg interval, that is 
0.01+0.06+0.09+0.19, to determine the cumulative probability of 0.35. 

Table VII 
Bodyweights (kg) of 100 cattle (hypothetical example) 

411 423 425 428 433 435 437 444 444 445 

452 456 456 456 457 459 460 462 463 463 
464 464 464 468 470 470 470 472 472 475 
478 478 479 479 479 482 484 485 487 487 
488 488 489 489 491 491 493 495 495 496 
496 497 500 500 500 501 502 503 503 505 
505 508 509 509 510 511 511 512 512 514 
514 515 515 515 517 519 520 520 523 525 
525 527 528 530 530 531 533 537 537 538 
538 538 540 553 560 562 568 569 581 587 

Table VIII 
Distribution of the bodyweight of 100 cattle from Table VII 

Weight class 
(kg) ix  

Number of cattle in 
each class ic  

Relative frequency of each 

class  
n

c
xp i

i   

Cumulative probability 

   


n

i
ii xpxXP

1
 

400 < 420 1 0.01 0.01 
420 < 440 6 0.06 0.07 
440 < 460 9 0.09 0.16 
460 < 480 19 0.19 0.35 
480 < 500 17 0.17 0.52 
500 < 520 25 0.25 0.77 
520 < 540 15 0.15 0.92 
540 < 560 3 0.03 0.95 
560 < 580 3 0.03 0.98 
580 < 600 2 0.02 1.00 
Total n =100 1.00 – 
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Figure 8 
A continuous distributions (histogram plot) of cattle bodyweight based on the data 
in Table VIII. The class interval is 20 kg 
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Instead of defining a continuous distribution directly from the data, as we have just done, 
we could use a mathematical function, such as the normal distribution function. As 
discussed in Chapter 3, this function is characterised by two parameters, the mean (μ) and 
standard deviation () which are estimated from a data set. While it provides quite a good 
approximation for many biological observations, such as weight, you should satisfy yourself 
that it is, in fact, an appropriate distribution to use for your data. For example, a normal 
distribution is unimodal, symmetrical about the mean (the mean, median and mode are all 
equal) and 95% of the distribution lies within ± 1.96 standard deviations of the mean. 

A normal distribution, based on the data in Table VII, is presented in Figure 9a. In contrast 
to a discrete distribution, where the relative frequency is the actual probability of 
occurrence of the discrete variable, the relative frequency of a continuous variable refers to 
an interval rather than an exact value. Since a continuous scale is infinitely divisible any 
value chosen simply reflects an interval. For example, the NORMDIST function in Excel 
calculates the probability of a cow weighing 500 kg as 0.011. The correct interpretation is 
that the probability of a cow weighing 500 kg, plus or minus a tiny amount, is 0.011. For a 
continuous variable, probability is correctly referred to as probability density and the area 
under the curve must add up to one. It is important to note that the vertical scale (y-axis) 
changes according to the units used on the x-axis. This is demonstrated in Figure 9 where 
bodyweight is expressed in either kilograms or tonnes. 
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a) cattle bodyweight in kg: normal (496,35) 

b) cattle bodyweight in tonnes: normal (0.496,0.035) 

Figure 9 
Two normal distribution plots of cattle bodyweight based on the data in Table VII 

Some discrete variables, such as bacterial cell counts or faecal egg counts, can be 
conveniently treated as continuous variables, where the gap between allowable values is 
considered to be insignificant in comparison to the magnitude of the values. 

Table IX provides some examples of discrete and continuous distributions. These are 
discussed in Chapter 4. 



Chapter 2: Probability and probability distributions  

18 Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 

Table IX 
Some examples of discrete and continuous distributions 

Discrete distributions Continuous 
distributions 

Binomial Beta 
Discrete Cumulative 
Discrete uniform Exponential 
Hypergeometric Gamma 
Negative binomial General 
Poisson Histogram 
 Lognormal 
 Normal 
 PERT 
 Triangular 
 Uniform 

_____________ 
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Chapter 3 
Theorems providing a basis for probabilistic risk assessment 

There are three important theorems which provide a basis for probabilistic risk assessment: 
the binomial theorem, the central limit theorem and Bayes’ theorem. 

Binomial theorem 
The binomial theorem provides a formula that enables us to easily calculate the probability 
of x successes in n trials where each trial has the same probability (p) of success. This idea 
was introduced in Chapter 1 of this volume.  

To understand the binomial theorem we will start with a Bernoulli trial, which is one of the 
simplest, yet most important, random processes in probability. The classic example of a 
Bernoulli trial is tossing a coin. There are two possible outcomes, either a head or a tail. If 
the coin is fair, the probability of obtaining either a head or a tail after a single toss is 0.5 or 
50%. If we toss the coin again, the probability of obtaining a head or a tail does not change. 
That is, the results of the two trials are independent. As discussed in Chapter 2 the 
probability of obtaining a head followed by a tail then a head is calculated by multiplying 
the respective probabilities: 

        125.05.05.05.0  HPTPHPHTHP  

A binomial process is a collection of such Bernoulli trials, and satisfies three assumptions: 

– each trial has two possible outcomes, called a success or a failure 

– the trials are independent. That is, the outcome of one trial has no influence over the 
outcome of another trial 

– each trial has the same probability of success (p). The probability of failure is 1-p. 

The binomial process can be easily applied to a situation where we choose animals from an 
infected herd. In this case, the two possible outcomes are that an animal is either infected 
or uninfected. Provided the herd is sufficiently large, we can reasonably assume that the 
probability that an animal is infected remains constant. This means that the disease status 
of an individual animal selected at random is independent of the disease status of all the 
other animals chosen beforehand. It also assumes that transmission of infection does not 
occur during the sampling period. 

Suppose we want to determine the probability of obtaining x infected animals in a sample 
of size n drawn from a herd where the disease prevalence is p. If we select three animals 
(n = 3) we can see from Figure 10 that there is/are: 

– one way of obtaining 3 infected animals, ppp   

– three ways of obtaining 2 infected animals,       ppppppppp  1,1,1  

– three ways of obtaining 1 infected animal,             ppppppppp  11,11,11  

– one way of obtaining 0 infected animals,      ppp  111 . 
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Figure 10 
A probability tree outlining the ways of obtaining x infected animals if three 
animals are selected, where p is the probability that an animal is infected and (1-p) 
is the probability that an animal is not infected 

Each of these probabilities can be represented as   xnx pp  1 . By substituting the 
appropriate values for x and n into this formula we can calculate the probability of a 
particular outcome. For example, the probability that all three animals are infected is given 
by   303 1 ppp  , while each of the probabilities of obtaining two infected animals is 

given by  12 1 pp  . Since we are interested in the probability of obtaining x infected 
animals, regardless of the order in which they were selected, we need to multiply these 
results by the number of ways we can obtain x infected animals, for example  12 13 pp  . 
As the number of animals sampled increases, it rapidly becomes impractical to work out 
the number of ways of obtaining x infected animals by drawing a probability tree and 
determining the number of ways that lead to a particular outcome. Fortunately, there is an 
easy way to do this. The number of combinations by which x successes in n trials may be 

obtained is calculated as  !!

!

xnx

n


. This is known as the binomial coefficient and in 
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mathematical notation is expressed as either 




n

x
 or x

nC , which is read as ‘n combination 

x’. In the preceding example the corresponding binomial coefficients are: 

  1
!33!3

!3
3

3
3

3









 C  

  3
!23!2

!3
2

3
3

2









 C  

  3
!13!1

!3
1

3
3

1









 C  

  1
!03!0

!3
0

3
3

0









 C  

Note: the factorial of a number, n ! = n ...321  and 0 ! = 1 

It can be seen that the generic formula to calculate the probability of exactly x successes in 
n trials is: 

    xnx pp
n

x
xXP 





 1  Equation 9 

If we add up all the possibilities, that is from x = 0 to x = n, we obtain the binomial 
distribution: 

  11
0










n

x

xnx pp
n

x
 Equation 10 

Continuing with our example, if we just choose three animals, the corresponding binomial 
distribution is: 

        1113131
3 32233

0

3 










 pppppppp
xx

xx  Equation 11 

Rather than having to laboriously work out each of the terms in the binomial distribution, 
one may use a spreadsheet package such as Excel which provides a binomial distribution 
function enabling an individual binomial term to be calculated by entering the appropriate 
values for x, n, and p: 

        xnx pp

n

x
pnxBINOMDISTxXP 














 10,,, (9) Equation 12 

The general solution to raising a binomial to an integral power, for example  nba  , is 
provided by: 

  









n

x

xnxn ba
n

x
ba

0
 Equation 13 

where n is a positive integer.  

Equation 13 can be manipulated to obtain a particular result. For example, the most 
common situation is likely to be where we want to determine the probability that at least 
one infected animal will be present in a sample drawn from an infected herd. In this case 

                                                 
9 The last parameter 0 in the BINOMDIST is a switch to make the function return either the binomial probability mass 
(switch = 0) or the cumulative binomial probability (switch = 1) 
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we sum the distribution from x = 1 to x = n. Alternatively we could subtract the term  nb  

from  nba   to obtain: 

     nn bbaxP 1  Equation 14 

We can then replace a and b with p and (1-p): 

        nnn ppppxP  11111  Equation 15 

We can also determine the probability that all the animals in our sample are test negative 
given there is at least one infected animal among them. In this case we replace a with 

 Sep  1 , the probability that an animal is test negative given it is infected and replace b 
with   Spp 1 , the probability that an animal is test negative given it is not infected: 

         nn SppSppSepDTP   11110  Equation 16 

where: T - = test negative 
D+ = infected 
p = prevalence 
Se = test sensitivity 
Sp = test specificity. 

An alternative derivation using Equation 13 is to imagine that we randomly select n animals 
from a population with prevalence p and we test all these animals using a test with 
sensitivity Se and specificity Sp. The probability that there are x infected animals in our 
sample is: 

xnx pp
x

n
xXP 








 )1()(  Equation 17 

The probability that all these animals also test negative is xnx SpSe  )1( . So the probability 
that the sample tests negative is these two probabilities multiplied together and the result 
summed for all x: 




 









n

x

xnxnxx SppSep
x

n
allTP

0

)1()1()(  Equation 18 

Comparing Equation 18 with Equation 13, we can set a = p(1-Se) and b = (1-p)Sp, so 
Equation 18 reduces to: 

 nSppSepallTP )1()1()(   Equation 19 

Central limit theorem 

The normal distribution 
The normal distribution (Fig. 11) is characterised by two parameters, the mean (μ), and 
standard deviation (). 



Chapter 3: Theorems providing a basis for probabilistic risk assessment 

Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 23 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3

standard normal deviate (z score)

pr
ob

ab
il

it
y 

de
ns

it
y

 
Figure 11 
A standardised normal probability distribution where the mean (μ) equals zero and 
the standard deviation () equals 1 

The mean or average is calculated by summing all the values in the population and dividing 
by the number of values: 

n

x
n

i
i

 1  Equation 20 

The standard deviation is a measure of the amount of variation about the mean. It is 
calculated by summing the square of the difference from the mean for each value in the 
population, dividing the sum by the number of values and finally taking the square root of 
this result: 

 
n

x
n

i
i

2

1







  Equation 21 

The square of the standard deviation is known as the variance (2). 

The normal distribution is an unbounded continuous distribution that extends from minus 
infinity to plus infinity and has a bell shaped curve. It is symmetrical about its mean so that 
the area under the curve to either the left or right of the mean is 50%. Ninety-nine percent 
of its values lie within  2.58 standard deviations of the mean. The mean locates the 
distribution on the x-axis (Fig. 12a) and the standard deviation determines its spread 
(Fig. 12b). As the standard deviation increases, the height of the distribution decreases and 
its spread increases. 
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Figure 12 
A series of normal distributions demonstrating influence of changes in either the 
mean (μ) or standard deviation () 
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The standardised normal distribution has a mean of zero and a standard deviation of 1. It 
permits the use of the same table of probabilities for all normal distributions. A normal 
random variable (x) can be standardised by expressing its value as the number of standard 
deviations (), to the left or right of the mean (μ). The resulting value is known as the 
standard normal deviate or z score: 





x

z  Equation 22 

The percentage of the area under the standard normal curve between two z scores 
represents the probability  21 zzzP i  . For example, if we weighed all the sheep in a 

flock and calculated the average body weight (μ = 50 kg) and standard deviation ( = 4 kg), 
we could determine the probability that a sheep chosen at random weighs between 40 kg 
and 45 kg by referring to Figure 13 and: 

– determining the z scores for 40 kg and 45 kg: 
5.2

4

5040
1 


z

 
25.1

4

5045
2 


z

 
– looking up the percentage of the area under the curve between the mean and each 

respective z score from a normal probability table: for z1 49.4% of the total area falls 
between the mean and –2.5 while z2 encompasses 39.4% of the total area.  

– subtracting the area encompassed by z2 from z1: 49.4%-39.4% = 10.0% 

 
Figure 13 
A normal probability distribution of the bodyweight of sheep with a mean of 50 kg 
and a standard deviation of 4 kg 

The answer to this example can also be obtained directly from the cumulative probability 
distribution by simply subtracting the cumulative probability for 40 kg from the cumulative 
probability for 45 kg (Fig. 14).  

 
Figure 14 
A cumulative normal probability distribution of the bodyweight of sheep with a 
mean of 50 kg and a standard deviation of 4 kg 
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Specific z scores, associated with a particular area under the curve relative to the mean, are 
often used in descriptive statistics and statistical inference. For example, 90% of the total 
area under the curve lies between z =  1.64, 95% lies between z =  1.96 and 99% lies 
between z =  2.58. It is important to remember that the z score relates to the distance 
from the mean. As a result, a z score of +1.96 represents 47.5% of the area under the curve 
to the right of the mean a z score of –1.96 represents 47.5% of the area under the curve to 
the left of the mean. So, if from the previous example, we are interested in describing the 
range in which we expect 95% of sheep bodyweights to lie we calculate it as 

8.75096.1   , which equals a range of 42.2 kg to 58.8 kg. 

Instead of weighing all the sheep in the flock we might just weigh some of them and want 
to make an inference about the average bodyweight of all the sheep in the flock. Since we 
are dealing with a sample of the population, the notation for the mean and standard 
deviation changes to reflect this. The sample mean is expressed as x , while the sample 
standard deviation is s. In this case, since the population parameters (μ and ) are unknown 
we need to calculate the standard deviation of the sample mean. This is more commonly 

referred to as the standard error of the sample mean, which is written as 
x

s  and calculated 

as: 
n

s
s

x

  Equation 23 

If we weighed 30 sheep and calculated their average weight as 48.5 kg and the standard 

deviation as 3.5 kg, the standard error of the sample mean, from Equation 23, is 64.0
30

5.3
 . 

We can now calculate a 95th percent confidence interval about our sample mean, 

25.15.4864.096.15.4896.1 
n

s
x  and conclude that, at the 95th percent 

confidence level, the average weight of all the sheep in the flock is likely to be between 
47.25 kg and 49.75 kg. 

Defining the central limit theorem 
The central limit theorem defines a relationship between the sampling distribution of the 
mean and the population distribution. A sampling distribution of the mean is obtained by 
repeatedly collecting n samples, calculating the mean of each of the n samples, determining 
how frequently we obtain each mean value and plotting the results on a graph. For 
example, we could weigh the amount of de-boned beef derived from each of five carcasses 
chosen at random and calculate the mean weight of the batch. If we repeated this exercise 
100 times we would gradually build up a distribution of mean weights (Fig. 15). Instead of 
weighing the amount of de-boned beef from five carcasses, we could increase our sample 
size to 10, or 25, or 100. As the sample size increases the sampling distribution of the mean 
looks more and more like a normal distribution (Fig. 16). This is, in fact, the relationship 
described by the central limit theorem, which can be formally stated as: 

If samples of size n, where n is large (usually greater than 30), are repeatedly taken from any population, 
regardless of the shape of its distribution, then the means of each of the samples are approximately normally 

distributed with a mean of μ and standard deviation of 
n


, 

where:  μ is the mean and 
 is the standard deviation of the population from which the samples are taken. 
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The distribution of the sample means x  is modelled by: 











n
Normalx

 ,  Equation 24 

Each sampling distribution of the means in Figure 16 is overlaid with a normal distribution 
curve modelled by this function. As can be seen from these plots it does not provide a 
good approximation for small sample sizes. 
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Figure 15 
A sampling distribution of the mean of the weight of de-boned beef derived from 
five carcasses 
Five samples were randomly selected from a PERT(40,50,90) distribution, the mean for 
each sample calculated and the results plotted on a frequency graph 

The fact that the central limit theorem does not depend on the shape of the distribution 
from which the samples are drawn is amply demonstrated in Figure 17, which is the 
original distribution upon which the examples in Figures 15 and 16 are based. 
The standard deviation of the sampling distribution of the mean, 










n

 , is more commonly 

referred to as the standard error of the mean. It enables us to obtain a measure of the 
extent we can expect the means from different samples of size n to vary. 
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n = 25
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Figure 16 
Sampling distribution of the mean of 100 samples of size n drawn from a 
PERT(40,50,90) distribution 
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Figure 17 
The original distribution upon which the examples in Figures 15 and 16 are based 

Since the mean of a sample of size n drawn from a population is given by 











n
Normalx

 , , it follows that the distribution of the sum of these n independent 

samples is obtained by multiplying by n, that is: 

 nnNormalxnxi  ,  Equation 25 

Population mean (μ) and population standard deviation () are known 
In some circumstances, we might reasonably assume that the population mean (μ) and 
population standard deviation () are known. For example, if we have abundant 
representative data from which to derive the parameters of a distribution. Following on 
from the de-boned meat example in the preceding section, we will assume that a 
PERT(40,50,90) distribution accurately reflects the amount of de-boned beef derived from 
a carcass. Suppose we want to determine how much de-boned meat would be obtained if 
5,000 cattle were slaughtered. A common mistake would be to multiply a random value 
from the distribution of weight (PERT(40,50,90)) by 5,000 in a simulation. This results in a 
grossly exaggerated and incorrect distribution (Fig. 18a). Such a calculation fails to 
appreciate that the amount of meat derived from each animal is a random sample from the 
PERT(40,50,90) distribution. That is each animal is independent of the next. It models 
implausible scenarios by assuming that each of the 5,000 animals contributes exactly the 
same amount of meat. By applying the central limit theorem we can avoid this mistake. In 
this example the correct way to model the amount of de-boned meat in tonnes derived 
from 5,000 cattle using Equation 25 is (Fig. 18b): 

1000

50007.8,555000 



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








Normal
ix  

where 55 kg and 8.7 kg are the mean and standard deviation of the PERT(40, 50, 90) 
population distribution respectively. 
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a) a comparison of the probability distributions obtained by a commonly used incorrect method of calculating the 
weight of de-boned meat derived from 5,000 cattle with the correct result obtained by applying the central limit 
theorem. Note: the area under the curve for both distributions equals 1 

b) the correct distribution for the amount of de-boned beef derived from 5,000 cattle 

Figure 18 

If each tonne of beef results in $6,000 worth of export revenue, what is the likely return 
from 5,000 cattle? It should be apparent that the correct way to model this question is: 

1000

50007.8,555000
000,6$





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
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

Normal
 

Suppose the revenue per tonne is modelled by a distribution, such as 
PERT($420,$550,$780). In this case consideration will need to be given as to how the meat 
is sold. That is, what is the smallest independent unit by which the meat is sold? For 
instance, is it per tonne, per container or per shipment? If the meat is sold in lots of one 
tonne then we might assume that the price received for each tonne is a random sample 
from the PERT($420,$550,$780) distribution. In this instance, the output from the formula 
predicting the number of tonnes of de-boned meat derived from 5,000 cattle, 

 
1000

50007.8,555000 


Normal
tonnes , is used as an input into a formula modelling the return 

per tonne: 






  tonnestonnesNormal ,$$  Equation 26 

where $μ and $ represent the mean and standard deviation of the PERT($420,$550,$780) 
distribution modelling the expected return ($) per tonne. 

If, however, the meat from 5,000 cattle is sold as one unit then the revenue generated is 
modelled by: 

1000

50007.8,555000
)780,$550,$420($






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 


Normal
Pert  

Population mean (μ) and population standard deviation () are not 
known 
In many situations we do not know the value of the population mean (μ) or the population 
standard deviation () or the shape of the underlying population distribution. We may only 
have one sample available to estimate these values. In these circumstances, provided we 
have more than thirty random samples, and provided the population distribution is not 

highly skewed, the central limit theorem will allow us to use the sample mean ( x ) and the 
sample standard deviation (s) to make inferences about the population mean (μ). 
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A probability distribution for the uncertain parameter, the population mean (μ) can be 

modelled by: 

















n
sxNormal ,  Equation 27 

We can see from Figure 16 that as the sample size (n) increases we can be increasingly 
confident that we can make use of the central limit theorem. With larger sample sizes the 
distribution of the sample means is subject to less variability, as the estimate for each mean 
is less influenced by particular values that may dominate the estimate. Sample sizes of thirty 
or more are usually regarded as adequate. If the sample size is less than thirty and the 
underlying population distribution is not normal or approximately symmetrical, the central 
limit theorem may not provide a valid approximation. In this case, more samples could be 
collected. If this is not possible, the techniques outlined in Chapter 6 for developing 
probability distributions for uncertain parameters such as the mean, where there are few 
representative data, could be used. 

Estimating the number of individuals (n) required to achieve a fixed 
total quantity 
Continuing with the de-boned meat example we might want to determine how many cattle 
contribute to a tonne of de-boned meat. Simply dividing 1,000 kg by a random value from 
the distribution of weight (PERT(40,50,90)) does not take into account that the amount of 
de-boned meat derived from each animal is a random sample from the PERT(40,50,90) 
distribution. That is, each animal is independent of the next. It models implausible 
scenarios by assuming that each animal contributes exactly the same amount of meat. Once 
again we need to apply the central limit theorem. In this case, however, it is not quite so 
straightforward. We need to set up a spreadsheet model that accounts for independence 
between animals as outlined in Table X. Each cell in column B independently samples 
from a PERT(40,50,90) distribution while column D adds up the cumulative results. 
Column E determines when the cumulative sum reaches one tonne and how many animals 
are needed by referring to column B. The model is then run on the output (cell E34), the 
results collected and the mean and standard deviation determined. From the discussion in 
the previous section, it should be apparent that we need to run the model for at least thirty 
iterations to estimate the sampling statistics. Several hundred iterations, as shown in Figure 
19, should suffice. We can now use these results to determine how many cattle contribute 
to, for example, 20,000 tonnes of meat in the formula  20000,20000 Normal . Figure 20 
demonstrates the consequence of ignoring the fact that each animal is independent. 

Table X 
An extract from a spreadsheet model calculating the number of cattle equivalents in 
one tonne of de-boned meat 

 A B C D E 

1 Weight of meat derived from an animal (kg) 40 50 90 

2 Formulae: 
C4:C33 {PERT($C$1,$D$1,$E$1)} 
D4 {=$C$4} 
D5 {=D4+C5}, D6 {=D5+C6} etc 
E4 {=0} 
E5 {=IF(D5<1000,IF(D6>1,000,B6,0),0)} etc. 
E34 {SUM($E$4:$E$33)} 

Number of Meat Cumulative Number 
3 cattle (kg) sum per tonne
4 1 52 52 0 
5 2 49 101 0 
6 3 55 156 0 
7 4 49 206 0 
... … … … … 
33 30 53 1,651 0 

34 Number of cattle represented in a tonne    19 

Note: lines 8-32 not shown 
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Figure 19 
The results obtained from running the model outlined in Table X for different 
numbers of iterations to obtain a distribution of the number of cattle equivalents 
per tonne of de-boned beef 
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Figure 20 
A comparison of the probability distributions of the number of cattle equivalents 
per tonne of de-boned beef when independence between cattle is either ignored or 
taken into account 

Bayes’ theorem 
Bayes’ theorem is a fundamental probability law governing the process of logical inference 
based on the information available. Suppose a herd of cows has a disease prevalence (p) of 
30% and we have a test available that has a sensitivity (Se) of 90% and a specificity (Sp) of 
98%. From this information we can directly determine the probabilities, P1 to P12, 
outlined in Figure 21 and Table XI. These probabilities allow us to answer questions such 
as ‘What is the probability that a cow is infected and is test negative?’ or ‘What is the 
probability that a cow chosen at random will be test negative?’ P10 and P12 give the 
answers to these particular questions. We might also want to determine the probability that 
a cow is infected, given that it is test negative. To do this we need to work out the 
proportion of a negative test result that is attributable to a false negative result by dividing 
the probability that a cow is infected and is test negative by the probability that a cow will 
be test negative irrespective of its disease status. This is Bayes’ theorem in operation. It 
allows us to revise our original probability estimate that a randomly chosen cow is infected 
(30%), in light of the new information we obtained by testing the cow. 
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Bayes’ theorem can be more formally expressed as:  

     
 BP

ABPAP
BAP

|
|


  Equation 28 

where P(A) represents our existing knowledge and is referred to as the prior probability. 

– P(B|A) is a conditional probability expressing the likelihood that (B) will be 
observed given our prior knowledge of event (A) 

– P(B) is the probability of event (B) irrespective of the status of event (A) 

– P(A|B) is the revised or conditional probability of event (A) given the new 
information we have obtained, P(B). 

Using the cow example described above we could calculate the probability that the cow is 
infected given that it is test negative: 

     
 

 
   SppSep

Sep

TP

DTPDP
TDP













11

1|
|  Equation 29 

   
    04.0

98.03.019.013.0

9.013.0
| 




 TDP  

We could also calculate this probability as:     NPVTDPTDP   11  Equation 30 

where:  
   SepSpp

Spp
NPV





11

1
 

 

Select a cow from an 
infected herd 

Accept the cow

Test the cow 

Test the cow 

prevalence (p) 
P1 = 0.3 

1-prevalence (1-p) 
P2 =1-0.3 

sensitivity (Se)
P3 = 0.9

1-sensitivity (1-Se)
P4 = 1-0.9

Specificity (Sp)
P5 = 0.98

1-specificity (1-Sp)
P6 = 1-0.98

Reject the cow

Accept the cow

Reject the cow

Scenario

P7=P1*P3=0.27 

P10=P1*P4=0.03 

P9=P7+P8=0.284 

P8=P2*P=0.014 

P11 =P2*P5=0.686 

P12=P10+P11=0.716

Test positive Test negative 

 
Figure 21 
A scenario tree outlining the pathways whereby a cow, selected at random from an 
infected herd, is accepted or rejected after it is tested 
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Table XI 
A table of probabilities related to animal disease prevalence and testing 
Note:  probabilities in the form of   DTP |  are conditional probabilities. This example is for the sensitivity 

of a test, that is the probability of a cow being test positive is conditional on the cow being infected 

P1.  Prevalence: the probability that a cow is infected   pDP   

P3. Sensitivity: the probability that the test will yield 
a positive result if the cow is infected 

  SeDTP  |  

P5. Specificity: the probability that the test will yield 
a negative result if the cow is not infected 

  SpDTP  |  

1. Complementary probabilities    APBP 1  

P2.  The probability that a cow is not infected     pDPDP   11  

P4. The probability that the test will yield a negative 
result if the cow is infected   SeDTPDTP 





  1|1  

P6. The probability that the test will yield a positive 
result if the cow is not infected   SpDTPDTP 





  1|1  

2. Joint probabilities under statistical dependence i.e. where the probability of one event is dependent on 
another      ABPAPBAP |  

P7. True Positive: the probability that the cow is 
infected and yields a positive test result 

      SepDTPDPTDP   |  

P8. False Positive: the probability that the cow is 
not infected and yields a positive test result 

           SppDTPDPTDP   11|11  

P10. False negative: the probability that the cow is 
infected and yields a negative test result  

        SepDTPDPTDP   1|1  

P11 True negative: the probability that the cow is 
not infected and yields a negative test result  

         SppDTPDPTDP   1|1  

3. Mutually exclusive events      BPAPBAP   

P9. Test positive: the probability of a positive test 
result irrespective of the disease status of the cow 

         SppSepTDPTDPTP   11  

P12. Test negative: the probability of a negative test 
result irrespective of the disease status of the cow 

          SppSepTDPTDPTP   11  

4. Conditional probability under statistical dependence (Bayes’ theorem)      
 BP

ABPAP
BAP

|
|


  

P13 True positive or PPV (positive predictive 
value): the probability that the cow is infected 
given the test result is positive 

   
     SppSep

Sep

TP

TDP
TDP













11
|  

P14 False positive: the probability that the cow is 
not infected given the test result is positive    

 
   

   SpppSe

Spp

TP

TDP
TDP













11

11
|  

P15 True negative or NPV (negative predictive 
value): the probability that the cow is not 
infected given the test result is negative 

   
 

 
    SppSep

Spp

TP

TDP
TDP













11

1
|  

P16 False negative: the probability that the cow is 
infected if the test result is negative    

 
 

    SppSep

Sep

TP

TDP
TDP













11

1
|  

Note: p = prevalence, Se = test sensitivity, Sp = test specificity 

_____________ 
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Chapter 4 
Useful probability distributions10 

A large number of probability distributions is available to the risk analyst, but their 
inappropriate use may lead to important flaws in the analysis. A relatively small number of 
probability distributions has proven useful and appropriate in import risk analysis and will 
be discussed in this chapter. The distributions discussed include those based on a binomial 
process (binomial, Beta, negative binomial) and those based on a Poisson process (Poisson, 
Gamma, exponential). Also covered are the cumulative, discrete, general, histogram, 
normal and lognormal, PERT (Beta PERT), triangular and uniform distributions. 

Distributions used to model a binomial process 
A binomial experiment or process has five characteristics: 

– the experiment consists of n identical trials 

– each trial results in one of two possible outcomes, either a success or a failure 

– the probability of a success on a single trial is equal to p and remains the same from trial 
to trial 

– the trials are independent, that is they are not influenced by the results of any previous 
trails 

– the interest is in x, the number of successes observed in n trials, for x = 0, 1, 2, ..., n. 

The binomial process can be characterised by two parameters; the number of trials (n) and 
the probability (p) that each trial is successful. The outcome is expressed as the number of 
successes (x). Tossing a coin or selecting a card from a pack are classic examples of a 
binomial process. It can also be applied to some situations where all the assumptions are 
not strictly met but which, for all practical purposes, approximate a binomial process. For 
example, suppose we choose animals from an infected herd. In this case, the two possible 
outcomes are that an animal is either infected or uninfected. If the herd is sufficiently large, 
we can reasonably assume that the probability that an animal is infected remains constant. 
This means that the disease status of an individual animal selected at random is 
independent of the disease status of all the other animals chosen beforehand. It also means 
that transmission of infection does not occur during the sampling period. 

Provided we can satisfy the assumptions of the binomial process, once two of the values n, 
p or x are known the third one can be estimated from the following distributions (Fig. 22): 

– binomial distribution is used to model the number of successes x:  
 pnBinomialx ,  

– Beta distribution is used to model the probability of success p:  
 1,1  xnxBetap  

– negative binomial distribution is used to model the number of trials n, undertaken 
before x successes have occurred:  

 pxbinomialNegativexn ,
 

                                                 
10 The general reference for this chapter is Vose D. Risk Analysis, A Quantitative Guide. John Wiley & Sons 
Chichester, 2000 
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 pnBinomialx ,

 1,1  xnxBetap  pxbinomialNegativexn ,
 

Figure 22 
Three distributions used to model the parameters of a binomial process 

Binomial distribution 

 pnBinomialx ,  

The binomial distribution is used to model the variation in the number of successes (x), 
that occur when n trials, each with a probability p, of success are undertaken. For example, 
if we toss a coin ten times, how many heads are we likely to obtain? If the coin is fair there 
will be an equal chance of obtaining either a head or a tail on each toss, that is, a probability 
of 0.5. By repeating the experiment a number of times and recording how many heads 
there are in each group of ten tosses, we will get a pretty good idea of the probability of a 
certain number of heads arising from 10 tosses. Rather than undertaking a large number of 
experiments we can use a binomial distribution function to model a distribution of x 
successes in n trials (Fig. 23a). We can extend this idea to choosing animals from an 
infected herd where we would like to determine the likely number of infected animals in 
the group selected (Figure 23b). 
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a) a binomial distribution of the probability of obtaining x heads when tossing a coin 10 (n) times. Tossing a coin, 
Binomial (10,0.5) 

b) selecting x diseased animals when selecting 10 (n) animals from an infected herd. Selecting a group of animals 
from an infected herd with 15% prevalence, Binomial (10,0.15) 

Figure 23 

Since the binomial coefficient,  !!

!

xnx

n


, involves calculating factorials, a computational 

limit is imposed by various software packages. For example, n must be less than or equal to 
32,767 in the Binomial(n,p) function in @RISK. When the number of trials is larger than 
this the function returns an error message. If n is very large and p is very small, the mean 
np, of the binomial distribution will be approximately equal to the variance npq, that is 

npqnp  . Since the mean and the variance of a Poisson distribution are equal we can use 
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the Poisson distribution as a convenient approximation,    npPoissonpnBinomial , . 
Where n is very large and p is neither very small nor very large, a normal approximation can 

be used,    npqnpNormalpnBinomial ,,  . 

Beta distribution 

 21 ,Betap   

The Beta distribution is characterised by two shape parameters, 1  and 2 , which do not 
have any particular intuitive meaning in themselves other than to define the shape of the 
distribution. Since its domain is between zero and one inclusive, the Beta distribution 
provides a convenient way of modelling uncertainty about the parameter p, the probability 
of success, in a binomial process. 

According to an empirical definition of probability (Chapter 2) the exact value of a 
probability can never actually be observed unless an infinite number of trials are 
undertaken. However, we can be increasingly certain of what its ‘true’ value is by 
undertaking a number of trials and observing how many successes there are. For example, 
if nine out of ten rams, known to be infected with Brucella ovis were positive to a serological 
test, we could estimate that the sensitivity of the test is 90%, that is, the probability that the 
test is positive given that a ram is infected   DTP . But, how confident could we be that 

this is a reasonable estimate, particularly considering that there were only ten rams in the 
trial? We could use the Beta distribution to model the uncertainty surrounding the 
parameter p, by replacing α1 with (x+1) where x is the number of successes and α2 with (n-
x+1) where n is the number of trials: 

   1910,191,1  BetaxnxBetap  

This distribution is actually the posterior distribution that arises from using a particular 
Beta distribution (Beta (1,1)) as a non-informative conjugate prior to a binomial likelihood 
function in Bayesian inference (Chapter 6). 

Figure 24 depicts a distribution modelling the uncertain parameter p, representing test 
sensitivity in our example. It also demonstrates that as more information is gathered by 
testing more animals we would be increasingly confident that the ‘true’ sensitivity is, in fact, 
around 90%. In the end there is always a trade-off between obtaining a reasonable level of 
confidence and the cost and effort needed to acquire additional information. 
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Figure 24 
Using the Beta distribution function to model an uncertain parameter (p) of a 
binomial distribution. In this case p represents test sensitivity 
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Table XII lists some useful applications of the Beta distribution in animal health risk 
analyses. 

Table XII 
Some applications of the Beta distribution (Beta(x+1, n-x+1)) 

Application n X 

Test sensitivity Number of diseased 
animals 

Number of diseased animals 
that are test positive 

Test specificity Number of non-
diseased animals 

Number of non-diseased 
animals that test negative 

Prevalence Number of animals, 
herd, flocks etc 

Number of diseased animals, 
herd, flocks etc. 

Estimating a probability when there are 
no ‘successes’, e.g. estimating 
prevalence when none of the animals 
sampled are found to be infected 

Number of animals 
sample, units imported, 
etc. 

Zero 

Negative binomial distribution  

 psNegbinsn ,  

The negative binomial distribution is characterised by two parameters, the number of 
successes (x) and the probability of a success (p). The outcome is expressed as the number 
of failures there will be before x successes have occurred. We can use this distribution to 
estimate the number of trials (n) that are likely to be undertaken before x successes have 
occurred by adding the number of successes (x) and the number of failures (Negbin(x, p)). 
For example, we might like to know how many animals we could select from an infected 
herd, which has a disease prevalence of 10%, before including an infected animal in the 
group. In this case the formula is Negbin(1,0.1) since we are interested in the number of 
uninfected animals (‘failures’) before obtaining the first infected one (Fig. 25). If we were 
interested in the number of animals we need to select to include one infected animal the 
formula would be  1.0,11 Negbin . 

n = Negbin(1,0.1)
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Figure 25 
A negative binomial distribution of the number of uninfected animals likely to be 
selected from a herd with a disease prevalence of 10% before including an infected 
animal in the group 
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Distributions used to model a Poisson process 
A Poisson process has four characteristics: 

– it models the number of events (x) that occur in an interval (t) of space or time  
– it is characterised by one parameter lambda ( ), the average number of events per unit 

interval of space or time 
– there is a constant and continuous probability of an event occurring per unit interval 
– the number of events that occur in any one interval is independent of the number that 

occur in any other interval. It does not matter how far apart the events are in space or 
time. For instance, an event may have only just been observed or there may have been a 
considerable interval between them. 

The interval (t) is measured in either space (per litre, per kilogram, per kilometre, etc) or 
time (per second, per hour, per day, per year, etc). The mean number of events per unit 

interval ( ) can also be expressed as 

1  where β is the mean interval between events. 

It should be noted that there are some differences in the terminology used in Excel and 
@RISK. The Poisson function in Excel is expressed as POISSON(x, expected value,0)11, 
where x is the number of events and the expected value is the expected number of events 

in the interval under study (t), which is calculated as either t  or 

t . In @RISK the 

Poisson function is expressed as Poisson(lambda) where lambda actually equals either t  

or 

t , not just simply  , unless of course t equals one. 

Three distributions are used to model the Poisson process (Fig. 26): 

a) Poisson distribution is used to model the number of events (x), in an interval (t):  
 tPoissonx    

b) Gamma distribution is used to model: 

– a distribution of  , the average number of events per unit interval  









t
xGamma

1
,

 
– a distribution of the time until the next x events have occurred   










1

,xGammatx

 
c) exponential distribution is used to model: 

– a distribution of the time until the next event has occurred  

















1

,1
1

GammaExpontnext

 
– a distribution of a lower bound for β, the mean interval between events, when no 

events have been observed: 

β min =  

                                                 
11 ‘0’ is a switch that determines whether the result is returned as a Poisson probability mass function, that is, the 
probability that number of events will be exactly equal to x. If it is set to ‘1’ it returns the cumulative Poisson probability, 
that is, probability that the number of events will be between zero and x inclusive 









t
Expon

1
1
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 tPoissonx  









t
xGamma

1
, 


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




1
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
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
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11

,1 ExponGammaNote: where x = 1

 
Figure 26 
Distributions used to model the parameters of a Poisson process 

Poisson distribution 

 tPoissonx   , or alternatively, this equation may be expressed as 












t

Poissonx  

The Poisson distribution is used to model the variability in the number of events  in an 
interval (t). Examples for which the Poisson process provides a very good approximation 
for estimating the number of events in an interval are the number of bacteria per litre of 
water, the number of outbreaks of a disease per year and the number of earthquakes per 
decade. Although, theoretically, there can be anything between zero and an infinite number 
of events in a specific interval, this is almost never a restriction in practice. For example, if 
there are four Giardia cysts per millilitre of water on average, Figure 27 demonstrates that 
the probability of more than 20 cysts is vanishingly small. 
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Figure 27 
A Poisson probability distribution of the number of Giardia cysts in a volume (t) of 
water where   = 4 cysts/ml, t = 1ml 

We can estimate the number of disease outbreaks expected during the next six months, 
given that historical information indicates an outbreak occurs on average every 24 months. 
In this situation the mean interval between events (β) is 24 months and   is 1/24 (0.04) 
outbreaks per month. The number of outbreaks in the next 6 months is then modelled as 
Poisson(6/24) as shown in Figure 28. 
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Figure 28 
A Poisson probability distribution of the number of disease outbreaks expected 
during the next time interval (t) = six months and the mean interval between events 

(β) =24 months: 







24

6
Poisson  = Poisson(0.25) 

Gamma distribution 

Estimating  , the average number of events per unit interval 









t
xGamma

1
,  

The Gamma distribution can be used to model uncertainty about the parameter  , the 
mean number of events per unit interval in a Poisson process. Just as with the binomial 
probability (p) if we adopt an empirical definition of probability (Chapter 2),   can never 
actually be observed unless our observations extend over an infinite interval. However, we 
can be increasingly confident of what its true value is by collecting more data. For example, 
if we observed three disease outbreaks over a period of 18 months we could estimate that 
the mean number of outbreaks per month is 0.17, provided, of course, that we can 
reasonably assume a Poisson process applies. In other words, has there been a continuous 
and constant probability of an outbreak arising throughout the period of observation and 
are the outbreaks we observed independent of one another? If we are satisfied that a 
Poisson process is applicable, how confident can we be that this is a reasonable estimate? 
We can use the Gamma distribution to model the uncertainty surrounding the parameter  
as shown in Figure 29. If we extended the period of observation and found there were 
seven outbreaks in 42 months we would be increasingly confident that the ‘true’ mean 
number of outbreaks per month is 0.17. 
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Figure 29 
Estimates of the mean number of disease outbreaks per month ( ) using the 
Gamma distribution, 








t
xGamma

1
, , where x = the number of outbreaks observed,  

t = the period of observation. A Poisson process is assumed to apply 
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The 







t
xGamma

1
,  distribution is, in fact, the posterior distribution obtained by assuming 

an uninformed prior with a Poisson likelihood function (Chapter 6). If we can reasonably 
describe our prior opinion with a  baGamma ,  distribution and we then observe x events 
in an interval t, the posterior distribution for   is given by: 












tb

b
xaGamma

1
,  

where: a = the number of events and 
b = the mean interval between events. 

Estimating the time until the next x events have occurred 












1
,Gammat  or alternatively, this equation may be expressed as 

  ,Gammat   

The Gamma distribution can be used to model the variation in the time until the next x 
events have occurred. If the mean interval between outbreaks of a particular disease (β) is 
24 months, we can estimate the length of time that is likely to elapse before we observe  
disease outbreaks. Figure 30 plots a distribution of the length of time that is likely to elapse 
before we experience four disease outbreaks. 
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Figure 30 
The length of time that is likely to elapse before four disease outbreaks have 
occurred if the mean interval between events (β) = 24 months, t4 = Gamma(4, 24). 
This may also be expressed in terms of the mean number of events per interval 

where   = 
24

1  = 0.042 and t4 = Gamma(4, 
042.0

1 ) 

Exponential distribution 
Estimating the time until the next event 

















1

,1
1

GammaExpontnext  

Alternatively, these equations may be expressed as     ,1GammaExpontnext  . 

Both the exponential and Gamma distributions can be used to model the variation in the 
time until the next event (the time between events). The Expon(β) is equivalent to a 
Gamma(, β) where the number of events ( is equal to 1. For example, if we can assume a 



Chapter 4: Useful probability distributions 

Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 41 

Poisson process and estimate that the mean interval between outbreaks of a particular 
disease is 24 months, we could define a distribution of how long it is likely to be before we 
can expect the next outbreak (Fig. 31). 
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Figure 31 
The time until the next disease outbreak if the mean interval between events (β) = 
24 months, tnext = Expon(24) or alternatively tnext = Gamma(1,24) 

Estimating a lower bound for β, the mean interval between events, 
when no events have been observed  

β = 









t
Expon

1

1
 

The exponential distribution can be used to estimate the lower bound for the mean interval 
between events (β) given that no events have been observed during an interval (t). There 
are several important assumptions in this estimate. It is assumed that the event is possible, 
that it occurs for the first time immediately after the last observation and that it follows a 
Poisson process. Since we are dealing with only one event, we can estimate   as 
















t
Expon

t
Gamma

11
,1  and since 


 1
  it follows that 











t
Expon

1

1 . 

The assumption of a Poisson process is particularly important and should be considered 
when determining an appropriate interval. For example, if foot and mouth disease (FMD) 
has not occurred in a particular country during the last ten years, can it be reasonably 
assumed that there has been a continuous and constant probability of an outbreak arising 
during that period? It may turn out that, as a result of increasing political instability over 
the last three years, border controls are not as effective as they once were and there is an 
increasing incidence of animals and meat being smuggled from a neighbouring country that 
has regular outbreaks of FMD. Obviously, the probability of an outbreak may have 
changed significantly. For this reason it may be inappropriate to estimate β based on a ten 
year interval and perhaps a two or three year interval should be chosen. 

Estimating the probability of at least one event in an interval 

  






 



t

EXPxP 11  

We can use the exponential function, for example the EXP() function12, to estimate the 
probability of at least one event in an interval. The probability that no events will occur in 

                                                 
12 Note: this is an Excel function and should not be confused with the @RISK Expon() function 
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an interval t, is 






 


t
EXP . This is equivalent to e-t/β and should not be confused with the 

exponential function in @RISK. It follows that the probability of at least one event in an 

interval is 






 



t

EXP1 . Alternatively, this equation may be expressed in Excel as: 

  tEXP1 , or 







 0,,01


t

POISSON , or  0,,01  tPOISSON  

The following example calculates the probability of at least one disease outbreak during the 
next six months given that the mean interval between disease outbreaks (β) is 24 months: 

  22.0
24

6
11 






  ExpxP  

This could also be determined by summing the individual probabilities for 1, 2, 3, ..., n 
events in Figure 28. 

Cumulative distribution 
Cumul (minimum, maximum,{xi},{pi}), where i = 1 to n 

The cumulative distribution can be used to convert a set of data into an empirical 
distribution provided the data are continuous and cover a reasonable range. For example, 
Melville and colleagues, 199613 reported the duration of viraemia in cattle naturally infected 
with bluetongue virus (Table XIII). Such data can be modelled using either the cumulative 
(Fig. 32) or histogram (Fig. 33) distribution function: 

Cumul (minimum, maximum,{xi},{pi}) = Cumul (0,13,{B3:B14},{E3:E14}) 
Histogrm (minimum, maximum,{pi}) = Histogrm (0,13,{D3:D14}) 

Table XIII 
The duration of viraemia in cattle naturally infected with bluetongue virus (adapted 
from Melville et al., 19961) 

 A B C D E 

1 Weeks Number of cattle Histogram probability Cumulative probability
2 from to 

3 0 1 53 0.111 0.111 
4 1 2 124 0.260 0.371 
5 2 3 148 0.310 0.681 
6 3 4 83 0.174 0.855 
7 4 5 36 0.075 0.931 
8 5 6 14 0.029 0.960 
9 6 7 10 0.021 0.981 
10 7 8 5 0.010 0.992 
11 8 9 2 0.004 0.996 
12 9 10 0 0.000 0.996 
13 10 11 0 0.000 0.996 
14 11 12 2 0.004 1.000 

                                                 
13 Melville L.F., Weir P., Harmsen M., Walsh S., Hunt N.T. & Daniels P.D. (1996). – Characteristics of naturally 
occurring bluetongue viral infections of cattle. In Bluetongue Disease in Southeast Asia and the Pacific (St George TD, 
Peng Kegao, eds). Proceedings No. 66, ACIAR, Canberra, 245-250. 
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Figure 32 
A cumulative probability distribution of the duration of viraemia in cattle naturally 
infected with bluetongue virus 

Discrete and discrete uniform distributions 
Discrete({xi},{pi}), where i = 1 to n 
Duniform({xi}), where i = 1 to n 

The discrete distribution has no theoretical basis and can be used as a general distribution 
function to describe a variable that can have one of several discrete values (xi), each with a 
weight (pi) which specifies the value’s probability of occurrence. The probabilities (pi) do 
not have to add up to 1 as the @RISK function automatically normalises them. It can be 
used to model a posterior distribution in a Bayesian inference calculation, to model expert 
opinion (Chapter 6) where there are divergent views, or to construct a composite 
distribution. The discrete uniform distribution is a particular form of the discrete 
distribution that can have one of several discrete values (xi), each with an equal probability 
of occurrence. 

General distribution 
General({xi},{pi}), where i = 1 to n 

The general distribution produces a generalised probability curve based on a density curve 
created using the specified x, p pairs. As with the discrete distribution, the probability 
densities (pi) do not have to add up to 1 as the @RISK function automatically normalises 
them. It can be used to model a posterior distribution in a Bayesian inference calculation 
where the parameter being estimated is continuous and to produce a fairly detailed 
distribution that reflects an expert’s opinion (Chapter 6). 

Histogram distribution 
Histogrm(minimum,maximum, {pi}), where i = 1 to n 

The histogram distribution is closely related to the general distribution and is used for 
continuous data to specify a distribution with a specified number of equal length classes. 
The range, defined by the minimum and maximum values, is divided into n classes, with 
each class having a probability pi, of occurrence. As with the discrete and general 
distributions the probabilities (pi) do not have to add up to one as the @RISK function 
automatically normalises them. It is useful for replicating the distribution shape of a set of 
data. 
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As discussed in the example of a cumulative distribution, the data reported by Melville and 
colleagues (1996) on the duration of viraemia in cattle naturally infected with bluetongue 
virus may also be modelled using a histogram distribution (Fig. 33). 
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Figure 33 
A histogram probability distribution of the duration of viraemia in cattle naturally 
infected with bluetongue virus, Histogrm (minimum, maximum,{pi}) = Histogrm 
(0,13,{D3:D14}) 

Hypergeometric distribution 
x = Hypergeo(n, D, M) 

A hypergeometric process is characterised by three parameters; the sample size (n), the 
number of individuals with the characteristic of interest (D), and the population size (M). 
The outcome is expressed as number of successes (x) in the sample. As discussed in 
Chapter 5, the probability of success in a hypergeometric process changes each time an 
individual is selected and removed from the population. It is effectively modelling sampling 
without replacement. For example, if the herd consists of 100 animals (M = 100) and there 

are five infected animals (D = 5), 
M

D
 is initially 0.05. If the first animal selected is infected 

then 04.0
99

4


M

D
 whereas, if it is uninfected, 051.0

99

5


M

D
. As a result the 

probability, measured by 
M

D
, changes depending on whether the previous animal was 

infected or not. That is, p is no longer independent of the outcome of the previous trial. 
This is in contrast to the binomial process where the probability of success (p) remains 
constant and the result of each trial is independent of the results of any of the previous 
trials. As a result, the binomial process is effectively modelling sampling with replacement. 
When the sample size (n) is small, (less than one tenth) compared to the population size 
(M), the binomial distribution closely approximates the hypergeometric distribution. 

Figure 34 provides a series of probability distributions of the number of diseased animals 
(x) in a sample of size n, selected from a herd of size M, where there are a number of 
infected animals (D). It compares the hypergeometric to the binomial distribution for 
decreasing values of the ratio of herd size to the number of animals in the group selected 
(M/n). The herd size (M) and number of infected animals (D) are held constant 
throughout the series. It can be seen that once the ratio of M/n falls below ten there is an 
increasing disparity between the two distributions. In fact, as M/n approaches 1 the 
binomial distribution predicts that there is a reasonable chance of having more infected 
animals in the group selected than actually exist in the herd. Depending on the particular 
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situation being modelled, these differences may not be very important. However, they 
should be kept in mind and the impact of low values of M/n investigated. 

n = 1, M/n = 500
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n = 10, M/n = 50
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n = 50, M/n = 10
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n = 100, M/n = 5
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n = 400, M/n = 1.25
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Figure 34 
A series of probability distributions comparing the hypergeometric and binomial 
estimates of the number of infected animals (x) in a group (n) selected from a herd 
(M) with a number of infected animals (D). 
The variables for herd size (M) and infected animals (D) are fixed at 500 and 25 
respectively. For the hypergeometric distribution, x = Hypergeo(n,D,M), while for the 
binomial distribution prevalence is calculated as D/M and x = Binomial(n,D/M) 

Lognormal distribution 

Lognorm(, ) 
Tlognorm(, , minimum, maximum) – truncated lognormal distribution 

The lognormal distribution is characterised by two parameters; the mean (μ) and standard 
deviation (). It is an unbounded, continuous distribution extending from zero to plus 
infinity that is used to model a variable (x) the natural log of which (ln(x)) is normally 
distributed. The parameters μ and σ are the actual mean and standard deviation of the 
lognormal distribution. Alternatively, the lognormal distribution may be specified by the 
mean and standard deviation of the normal distribution of ln(x). The lognormal 
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distribution is one of the most widely used distributions in probabilistic risk assessment. It 
often provides a good representation for data that extend from zero and are positively 
skewed. That is, data which have a longer right hand tail, such as herd and flock sizes, 
weight of processed ham, carcass weights and disease incubation periods. In addition, the 
outputs from computer simulations involving the multiplication of two or more 
distributions are often distributed lognormally. 

Since the lognormal distribution extends from zero to plus infinity we may need to 
constrain it to avoid implausible values. For example, we could model the incubation period 
for a particular disease as Lognorm(5,3), as has been done in Figure 35. If this disease had a 
minimum and maximum incubation period of two and fourteen days respectively, there is a 
reasonable chance that some random samples drawn from the distribution would fall 
outside this range. For this reason, we need to truncate the distribution so that sensible 
values are sampled . 
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Figure 35 
A lognormal distribution modelling a disease incubation period. 
The untruncated distribution = Lognorm (5,3), while the truncated distribution with a 
minimum of two days and a maximum of fourteen days = Tlognorm (5,3,2,14) 

Normal distribution 

Normal(, ) 
Tnormal(, , minimum, maximum) – truncated normal distribution 

The normal distribution is characterised by two parameters; the mean (μ) and standard 
deviation (). It is an unbounded continuous distribution that extends from minus infinity 
to plus infinity and has a bell shaped curve (Fig. 36). It is symmetrical about its mean with 
99.9% of its values lying within 3 standard deviation of the mean. Many naturally 
occurring variables such as weight, height, viral titre in tissues, physiological characteristics, 
pH of tissues and fluids, and milk and egg production are normally distributed. Others are 
normally distributed following some transformation of the data; for example, a log 
transformation of a set of data on the incubation period of a disease. The normal 
distribution has an extensive variety of applications ranging from the central limit theorem 
(Chapter 3) to statistical theory where it is widely used in statistical inference and 
hypothesis testing. 

Since the normal distribution is unbounded, we may need to constrain it if we are to avoid 
implausible values. Figure 36 illustrates the impact of different values of the coefficient of 

variation, 







mean

deviationdards tan
, on the spread of the distribution and the likelihood of 

randomly sampling ‘unrealistic’ values. It is certainly worthwhile checking, particularly if the 
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coefficient of variation is reasonably large. If it is likely that unrealistic values will be 
sampled we need to truncate the distribution using the Tnormal(,,minimum, maximum) 
function where minimum and maximum define the minimum and maximum of the plausible 
range of values. 
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Figure 36 
Three normal probability plots. 
All with the same mean (μ = 50), demonstrating the impact that different values of the 
coefficient of variation have on the spread of the distribution and the likelihood of 
randomly sampling ‘unrealistic’ values 

If the normal distribution is used to model a discrete variable, such as the number of 
animals in a herd, we may need to consider correcting for continuity. This is easily achieved 
by applying a ROUND(…,0) function to the distribution ROUND(Normal(, ),0). 
Alternatively, suppose we set a spreadsheet up to calculate the probability of obtaining a 
herd of x animals. Rather than simply calculating the probability using the probability mass 
function, NORMDIST(x,μ,,0), we need to add and subtract 0.5 to each value of x. Then 
we can use the cumulative density function to calculate the probability associated with the 
interval bounded by 5.0x , that is, NORMDIST(x+0.5,μ,,1)- NORMDIST(x-0.5,μ,,1).  

PERT (Beta PERT) distribution 
PERT(minimum, most likely, maximum)  

A PERT distribution is a modification to the Beta distribution that enables a continuous 
smooth distribution to be defined by its minimum, most likely and maximum values:  

      aacBetacbaPERT  21,,,   

where: a = minimum 
b = most likely 
c = maximum 

 α1
   
   acb

caba







 2
 

α2
 

 a

c







1  

μ (mean)
6

4 cba 
  
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The PERT distribution provides a more natural shape than the triangular distribution and 
is not influenced as much by the extreme (minimum and maximum) values, particularly 
when the distribution is skewed (Fig. 38). It is a useful distribution for modelling expert 
opinion (Chapter 6). 

In the standard PERT distribution a weight of four is applied to the mean so that the mean 
is four times more sensitive to the most likely value than it is to the minimum or maximum 
values. This can be manipulated by incorporating a weighting factor ( ) into the formula 
calculating the mean enabling various shapes to be generated using the same values for the 
minimum, most likely and maximum: 

2







cba

, where  is the weight.  

Figure 37 shows an example of the age at which chickens are likely to become infected with 
infectious bursal disease (IBD) virus prior to being slaughtered at 49 days of age. Initially 
there was a great deal of uncertainty, so a uniform distribution, Uniform(1,49) was used14. 
Later some information became available indicating that they were most likely to become 
infected around three weeks of age. This was modelled as a PERT(1,21,49). After further 
enquiries the estimate was refined to ‘most chickens become infected between 14 and 28 
days of age’. This was interpreted as 90% of chickens being likely to become infected 
during this period15. A modified PERT, with a weight of 28.2, determined by using the 
Solver function in Excel (Table XIV), was used to model this new information. The same 
estimates for the minimum, most likely and maximum values were used as in the original 
PERT distribution (Fig. 37). 
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Figure 37 
A comparison of a uniform distribution, a standard PERT distribution and a 
modified PERT distribution of the age when a chicken is likely to become infected 
with IBD virus prior to slaughter at 49 days of age 

                                                 
14 MAF Regulatory Authority. Import Risk Analysis: chicken meat and chicken meat products; Bernard Matthews 
Foods Ltd turkey meat preparations from the United Kingdom. Wellington, New Zealand, 1999 

15 MAF Regulatory Authority. Revised Quantitative Risk Analysis on Chicken Meat from the United States. Wellington, 
New Zealand, 2000 
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Table XIV 
A spreadsheet model to calculate the weight ( ) for a modified PERT distribution 
using the Solver function in Excel 
The weight ( ) is set as the cell to change (B8) and the target is set to cell B9 with a value 
equal to 0.9, which represents the area under the curve that falls between fourteen and 
twenty-eight days. The BETADIST function calculates the cumulative Beta probability 
density 

 A B 

1 Inputs  

2 Minimum (a) 1 
3 Most likely (b) 21 
4 Maximum (c) 49 
 Calculated values  
5 Mean (μ) 

2







cba

 

6 Alpha 1 
α1

   
   acb

caba







 2
 

7 Alpha 2 
α2

 
 a

c







1
 

8 Cell to change (γ = weight) 28.2 
9 Target cell (area under the curve) BETADIST(28, α1, α2, a, c)- BETADIST(14, 

α1, α2, a, c) 

 

Triangular distribution 
Triang(minimum, most likely, maximum) 

The triangular distribution is a continuous distribution that has been extensively used to 
model expert opinion. It is defined by minimum, most likely and maximum values. Its main 
drawback is its unnatural shape, which rarely, if ever, provides a reasonable description of a 
biological process. It tends to overemphasise the tails and underestimate the shoulders of a 
distribution compared to more naturally curved distributions, such as the PERT (Fig. 38). 
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Figure 38 
Comparing a triangular and PERT distribution 
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Uniform (rectangular) distribution 
Uniform(minimum, maximum) 

The uniform distribution, which is also known as a rectangular distribution, is a simple 
continuous distribution that only requires an assumption about the range of possible 
values. All values within the range have an equal probability of occurrence. It is used 
mostly when there is very little information available, other than a range of possible values. 
For instance, we might have some information that IBD virus has been isolated from 
muscle tissue between two and six days following infection16. This information can be 
usefully incorporated into a model as a Uniform(2,6) distribution as shown in Figure 39. 
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Figure 39 
A uniform distribution of the duration of tissue infectivity in chicken muscle 
following infection with IBD virus 

_____________ 

                                                 
16 MAF Regulatory Authority. Import Risk Analysis: chicken meat and chicken meat products; Bernard Matthews 
Foods Ltd turkey meat preparations from the United Kingdom. Wellington, New Zealand, 1999 
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Chapter 5 
Probability processes and calculations 

Expressing probability: the binomial versus the 
hypergeometric process 
The outcome of interest in many quantitative risk assessments is a binary response. That is, 
there are only two possible outcomes. For example, an animal is infected or it is not; a test 
is positive or it is not; a disease outbreak occurs or it does not. In these circumstances 
probability may be expressed in one of two ways. Using disease prevalence as an example 
we might estimate that the probability that an animal from a herd of size M is infected is 
0.05, or we could assume that we know exactly how many infected animals (D) there are in 

the herd, in which case the prevalence is exactly 
M

D . What is the difference? In the first 

case we assigned a probability,  05.0p , that a randomly selected animal within the herd 
will be infected. In this case a prevalence of p does not mean that there are exactly 

Mp  infected animals. Rather, it means that each animal has the same probability (p) of 
being infected and that we would expect, on average, there to be Mp  infected animals in 
the herd. This situation is akin to each animal within a herd being selected from a 
hypothetical ‘super-herd’ with an infinite number of animals of which proportion p are 
infected. In such a herd, the number of infected animals (D) is binomially distributed, 

 pMBinomialD , . Similarly, if a sample of n animals is randomly chosen, the number of 
infected animals (x) in the sample and the probability (P) that the sample contains x 
infected animals are both binomially distributed: 

 pnBinomialx ,  
   0,,, pnxBINOMDISTxXP   

A fundamental property of the binomial process is that each trial has the same probability 
of success. That is, the probability (p) that an animal is infected remains constant for each 
animal. This means that the disease status of an individual animal selected at random is 
independent of the disease status of all the other animals chosen beforehand. As a result 
the binomial process is effectively modelling sampling with replacement. While we would 
not obviously do this in practice, it is reasonable to assume that the probability remains 
constant from animal to animal provided the population from which we are sampling from 
in relation to the sample size is large. As a guide, if the size of the population is at least ten 
times the sample size such an assumption is adequate. 

If we model prevalence as a binomial process (Chapters 3 and 4), then in herds where the 
expected number of infected animals ( Mp  ) is low, there is a reasonable chance that some 
herds may not contain any infected animals (Fig. 40). This may seem unreasonable at first, 
since we have stated that the herd has a prevalence of infection equal to p, and so it is 
natural to assume that the herd actually contains at least one infected animal. Rather than 
thinking of infected and uninfected herds we could, instead, think of risk herds and non-
risk herds. Risk herds are the proportion of herds where it is expected that, on average, 
there will be Mp   infected animals. Non-risk herds, on the other hand, are the proportion 
of herds where the prevalence of infection (p) is zero and, as a result, the expected number 
of infected animals, ( Mp  ) is zero. 

If we assume we know exactly how many infected animals there are in the herd the 
binomial process no longer applies. In this case the number of infected animals (x) in a 
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sample of animals (n) chosen at random, and the probability (P) that the sample contains x 
infected animals are both distributed hypergeometrically: 

 MDnHypergeox ,,  

   MDnxTHYPGEOMDISxXP ,,,  

The hypergeometric process models sampling without replacement and enables us to relax 
the assumption of the binomial process that the probability (p) is constant. Each time an 
animal is chosen for inclusion in a sample the probability that the next animal selected will 
be infected changes. That is, the probability of selecting an infected animal does not remain 
constant. While modelling prevalence as a hypergeometric process has a certain appeal 
there are, unfortunately, some significant drawbacks. We are rarely, if ever, in a position to 
know precisely how many infected animals there are in a herd. More importantly though, as 
discussed below, because the probability does not remain constant, the mathematics 
involved quickly become unwieldy. 
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Figure 40 
A series of binomial probability distributions modelling the probability of (D) 
infected animals in a herd of 100 animals with a prevalence of infection ranging 
from 1% to 25% where  pMBinomialD ,  

Binomial probability calculations 
At this stage we will assume that a binomial process (Chapters 3 and 4) is applicable. 
Therefore the probability (p) of an event means that we would expect there to be, on 
average, np  events, if we undertook n trials. So, if we assume the prevalence of 
infection is p, we would expect there to be Mp   infected animals on average in a herd of 
size M. In addition, the probability that the next animal selected is infected remains 
constant, no matter how many animals have already been selected. We will consider later 
the alternative scenario, where we assume that we know exactly how many infected animals 
there are in a herd. In this case we expect the probability of an animal being infected to 
change, depending on the disease status of those selected previously, as outlined below. 
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The probability of including at least one infected animal in a 
consignment 

No sanitary measures 

A sanitary measure is one that is applied to manage risks posed to animal or human health. 
In this section, however, we will consider the likelihood of importing an infected animal if 
no sanitary measures are applied. The following calculations provide an estimate of the 
unrestricted or unmitigated risk. The likelihood following the application of sanitary 
measures is considered below. 

a) Animals are selected at random from a population (e.g. a herd, region or country) with a prevalence of 
infection p 

As discussed previously, if the probability that an animal is infected is p then, if 
n animals are selected at random, the probability that: 

– all n animals are infected is pn 
– none of the n animals is infected is (1- p)n 
– at least one of the n animals is infected is 1-(1- p)n. 

Select an animal at
random from the

population

Animal infected
 (p)

Animal not infected
 (1-p)

 
Figure 41 
A scenario tree outlining the pathways whereby an animal selected at random 
from a population is infected or not 

We can also derive this result from the binomial function (Chapter 3). The probability 
of including exactly 0, 1, 2, 3 …, x infected animals amongst a group of n randomly 
selected animals from a particular population with a prevalence of infection p is 
calculated by the binomial function: 

        xnx pppnxBINOMDISTxXP
n

x









 1,,  Equation 31 

where: x = number of infected animals 
n = the number of animals in the consignment and  
p = the prevalence of infection in the population.  

Each of these terms can be added together. For example if we want to determine the 
probability of including at least one infected animal (D+) in a consignment of n animals 
we would add the terms from x = 1 to x = n: 

      xnn

x

x ppDP
n

x




  







 11

1
 Equation 32 
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Alternatively, the solution may be obtained by subtracting the complementary 
probability of at least one infected animal. That is 1 minus the probability of no infected 
animals in a sample n: 

      00 111
0

 









 nppDP

n
 Equation 33 

Since both 








n

0
 and   10 p  this equation can be more conveniently expressed as: 

   npDP  111  Equation 34 

b) Animals are selected from subsets of the population. That is, disease clustering is taken into account 

In this case the animals will be selected in two stages. Initially a herd will be selected and 
then the animals will be chosen from within that herd (Fig. 42). The simplest case is 
where we assume that the prevalence of infection within each infected herd and the 
number of animals chosen is the same for each herd. If h herds are selected and n 
animals chosen from each herd then the probability of at least one infected animal being 
included in the consignment is:  

     hnpHPDP  11111  Equation 35 

where: HP = the herd level prevalence (proportion of infected herds) 
n = number of animals chosen from a herd 
h = number of herds. 

Select a herd

Select an animal from the herd

Herd infected
(HP)

Herd not infected
(1-HP)

Animal infected
(p)

Animal not infected
(1-p)

 
Figure 42 
A scenario tree outlining the pathways whereby an animal selected at random 
from a herd is infected or not 

If the number of animals (n) selected and/or the prevalence (p) varies from one herd to 
another, then this formula will need to be modified accordingly: 

      



h

i

n
i

ipHPDP
1

11111  Equation 36 
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In this case we need to calculate the probability that there are no infected animals from 

each of i herds,    in
ipHP  111 , multiply all these results together, 



h

i 1

 and subtract 

the answer from one to determine the probability of at least one infected animal in a 
consignment derived from h herds. 

Sanitary measures are applied 

A sanitary measure is one that is applied to manage risks posed to human or animal health. 
Measures include tests, inspections, treatment, quarantine, etc. This section examines the 
effect of applying tests as sanitary measures. The calculations thus provide an estimate of 
the risk remaining after sanitary measures are applied. 

a) Test positive animals are rejected 

– Animals are selected at random from a population (e.g. a herd, region or country) with a prevalence 
of infection =p, and tested with a test with sensitivity = Se and specificity = Sp. 

Figure 43 outlines how we can determine if there is at least one infected animal present 
amongst all the animals we accept; that is, amongst the test negative animals. We need 
to calculate the proportion of false negatives (B) among the animals accepted (B+C). 

That is, 
CB

B


. More formally, we divide the probability that an animal is both infected 

and test negative by the probability that it is either infected and test negative or 
uninfected and test negative (Bayes’ theorem, Chapter 3): 

      
         










DTPDPDTPDP

DTPDP
TDP

11

1
 Equation 37 

Select an animal from an
infected herd, region or country

B: animal accepted
false negative = p*(1-Se)

Test the animal

Test the animal

Animal is infected (p)

Animal not infected (1-p)

Test positive (Se)

Test negative (1-Se)

Test negative (Sp)

Test positive (1-Sp)

D: animal rejected
false positive = (1-p)*(1-Sp)

C: animal accepted
true negative = (1-p)*Sp

A: animal rejected
true positive = p*Se

Scenario

 
Figure 43 
A scenario tree outlining the pathways whereby an animal, selected at random 
from a population and tested, is infected or not 

Equation 37 can also be expressed as: 

   
   SppSep

Sep
TDP






11

1  Equation 38 
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and scaled up to determine the probability that there will be at least one infected animal 
in the consignment: 

   
   

n

SppSep

Sep
allTDP 











 

11

1
111  Equation 39 

In Equation 39 it is assumed that all the test results are independent for all animals 
tested. If this is not true, then the protection afforded by the sanitary measure may be 
over-estimated.  

Alternatively we could determine the negative predictive value (NPV) of the test and 
calculate its complementary probability to determine the probability of at least one 
infected animal in our consignment. The NPV (   TDP ) is calculated as: 

   
   SppSep

pSp
TDPNPV




 

11

1  Equation 40 

and the probability of there being at least one infected animal amongst the group 
accepted is: 

   
   

n

n

NPV
SppSep

pSp
allTDP 











  1

11

1
11  Equation 41 

Note that Equations 39 and 41 give identical answers. 

An alternative formula can be derived from the binomial function (Chapter 4). The 
probability that all the animals in a group of size n are test negative, if there are 0, 1, 2, 3, 
…, x infected animals in the group, is calculated by extending Equation 31 to include 
the probability that the infected animals (x) and uninfected animals (n-x) are all test 
negative and summing the individual binomial terms from x = 0 to x = n: 

        
















 n

x

xnxxnx SpSeppallTP
n

x0
11   Equation 42 

Equation 42 can also be expressed as: 
      nSppSepallTP  11  Equation 43 

To calculate the probability that there will be at least one infected animal in a 
consignment, given that all the animals we accept are test negative, we need to first 
calculate the probability that all the animals are test negative, given there is at least one 
infected animal among them. To do this we need to sum the binomial probabilities in 
Equation 42 for x = 1 to x = n: 

       


 









n

x

xnxxnx SpSepp
x

n
DallTP

1

111  Equation 44 

Equation 44 can also be expressed as: 

         nn SppSppSepDallTP   1111  Equation 45 

Equation 15 represents the binomial summation from (x = 0 to n) minus (x = 0). Next 
we need to determine the proportion that these animals represent out of all the test 
negative animals. This is an application of Bayes’ theorem and involves dividing 
Equation 26 by Equation 24: 

         
    n

nn

SppSep

SppSppSep
allTDP




 

11

111
1  Equation 46 

Note that Equations 39, 41 and 46 give identical answers. They are simply alternative 
forms of calculating the probability in which we are interested. 
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– Animals are selected from subsets of the population. That is, herd level effects are taken into account. 

In this case the animals will be selected in two stages. Initially a herd will be selected and 
then test negative animals will be chosen from within that herd (Fig. 44).  

Step 1
 select a herd

Step 2
select an animal

B: animal accepted
(false negative)

Test the animal

Test the animal

Herd infected
(HP)

Herd not infected
(1-HP)

Animal is infected
(p)

Animal not infected
(1-p)

Test positive
(Se)

Test negative
(1-Se)

Test negative
(Sp)

Test positive
(1-Sp)

D: animal rejected
(false positive)

C: animal accepted
(true negative)

A: animal rejected
(true positive)

Scenario

 
Figure 44 
A scenario tree outlining the biological pathways leading to an animal, selected 
from an infected herd, being either accepted or rejected after it has been tested 

The simplest case is where we assume that the prevalence of infection within each herd, 
the number of animals chosen and the test sensitivity and specificity are the same for 
each herd. If h herds are selected and n test negative animals chosen from each herd 
then the probability of at least one infected animal being included in the consignment, 
given that they are all test negative, can be calculated by any one of Equations 47, 48 
or 49: 
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    hnNPVHPallTDP   1111  Equation 48 
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These equations are derived from Equations 39, 41 and 46 respectively. 

If the number of animals selected (n), the prevalence (p), the test sensitivity (Se) or the 
test specificity (Sp) vary from herd to herd, then these equations will need to be 
modified accordingly:  
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b) Test positive groups are rejected 

– Animals are selected at random from a population (e.g. a herd, region or country) with a prevalence 
of infection p, and tested with a test with sensitivity Se, and specificity Sp. 

Rather than rejecting individual test positive animals, we could reject all animals from a 
particular group if at least one of them were test positive. If we simply selected another 
group of animals from the same population, then the probability of including at least 
one infected animal in the consignment would be the same as calculated from Equations 
39, 41 or 46. In other words, a group selection strategy in these circumstances offers no 
advantage over a strategy where we reject test positive individuals. The disadvantage, of 
course, is that there will be a considerable wastage of animals. 

– Animals are selected from subsets of the population. That is herd level effects are taken into account. 

In this case the group will be selected in two stages. Initially a herd is selected and a 
group of animals chosen from within that herd. If at least one of the animals is test 
positive the group, and therefore the herd, is rejected and another herd will need to be 
chosen (Fig. 45).  

Step 1
select a herd

Step 2
select a group of anim als

Step 2
select &  test a group of anim als

B: group accepted
(false negative)

Test anim als

Test anim als

F: group rejected
(false positive)

select another herd

E: group accepted
(true negative)

Herd infected

Herd not infected

1 anim al is infected

No infected anim als

1 anim al is test positive

1 anim al is test positive

All anim alstest negative

All anim als test negative

All anim als test negative

1 anim al is test positive
D: group rejected

(false positive)
select another herd

C: group accepted
(true negative)

A: group rejected
(true positive)

select another herd

Scenario

 
Figure 45 
A scenario tree outlining the biological pathways leading to group of animals selected 
from a herd, being either accepted or rejected following testing. One or more test positive 
animals in the group results in the entire group being rejected and another herd being selected 
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To account for disease clustering within herds we need to modify Equations 43 and 45 
accordingly: 

         nn SpHPSppSepHPgroupTP  111  Equation 53 

          nn SppSppSepHPDgroupTP   1111  Equation 54 

where: HP = the herd level prevalence (proportion of infected herds). 

The simplest case is where we assume that the prevalence of infection within each herd, 
the number of animals chosen, and the test sensitivity and specificity are the same for 
each herd. If h herds are selected and there are n animals in the group chosen from each 
herd then the probability of at least one infected animal being included in the 
consignment is: 
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If the number of animals selected (n), the prevalence (p), the test sensitivity (Se) or the 
test specificity (Sp) vary from herd to herd, then this formula will need to be modified 
accordingly: 
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Hypergeometric probability calculations 
As noted previously, a fundamental property of the binomial process is that probability 
remains constant. This means that the disease status of an individual animal selected at 
random is independent of the disease status of all the other animals chosen beforehand. 
The binomial process is effectively modelling sampling with replacement. In other words, 
the proportion of infected animals remaining in the herd can be considered constant; the 
binomial process is a good approximation if the number of animals being sampled is much 
less than (usually less than a tenth of) the herd size. 

In some situations, an assumption of constant probability may no longer be reasonable as, 
for example, when sampling from small populations. For example, if the herd consists of 

100 animals (M = 100) and there are five infected animals (D = 5), 
M

D
 is initially 0.05. If 

the first animal selected is infected, then the fraction of animals infected becomes 

04.0
99

4
  whereas if the selected animal is uninfected this fraction becomes 051.0

99

5
 . 

As a result the probability that a selected animal is infected changes depending on whether 
the previous animal was infected or not. That is, p is no longer independent of the outcome 
of the previous trial.  

The hypergeometric probability of obtaining exactly x infected animals in a sample of size s 
from a herd of M animals where there are exactly D infected animals is: 

   





























M

n

DM

xn

D

xMDnxTHYPGEOMDISxXP ,,,  Equation 57 



Chapter 5: Probability processes and calculations 

60 Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 

The numerator 
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calculates the total number of combinations for obtaining x 

infected and n-x uninfected animals in a sample n, from a herd of M animals of which D 

are infected. This is divided by the denominator 





M

n

, which calculates the number of 

combinations for obtaining a sample of n animals from a herd of size M. 

The probability that all the animals in a group of size n are test negative, if there are 0, 1, 2, 
3, …, x infected animals in the group, is calculated by extending Equation 57 to include the 
probability that the infected animals (x) and uninfected animals (n-x) are all test negative 
and summing the individual hypergeometric terms from x = 0 to x = n: 
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 Equation 58 

To calculate the probability that there will be at least one infected animal in a consignment, 
given that all the animals we accept are test negative, we need to firstly calculate the 
probability that all the animals are test negative, given there is at least one infected animal 
among them. To do this we need to sum the hypergeometric probabilities in Equation 58 
for x = 1 to x = n: 
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 Equation 59 

Next we need to determine the proportion that these animals represent out of all the test 
negative animals. This is an application of Bayes’ theorem and involves dividing Equation 
59 by Equation 58: 

 
 

  xnxn

x M

n

DM

xn

D

x

xnxn

x M

n

DM

xn

D

x

SpSe

SpSe

TallDP





































































1

1

1

0

1

 Equation 60 

Unlike the binomial calculations discussed previously, this equation cannot be simplified 
because the probability changes as each animal is sampled. For this reason, the 
hypergeometric distribution is cumbersome to work with and the calculations quickly 
become unwieldy. We need to set up a spreadsheet to either calculate (Table XV) or 
simulate (Table XVI) the required probability. The series of graphs depicting the 
probability of obtaining test negative results (Fig. 46) shows, as expected, that as the 
prevalence of infection and the number of animals sampled increases, the probability that 
an infected herd is missed, or of obtaining a group of test negative animals, becomes 
increasingly unlikely. However, of those groups that are accepted, there is an increasing 
chance that there will be at least one infected animal amongst them. 
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Table XV 
A spreadsheet model to calculate the probability that there is at least one infected 
animal in a sample of n test negative animals selected from a herd of size M in 
which there are D infected animals 17 

 A B 

1 Input variables: 
M = herd size 

N = sample size (set to 100 in this example) 
D = number of infected animals in the herd 

Se = test sensitivity 
Sp = test specificity 

2 Number of infected animals in sample x   allTDP 1  

3 0 HYPGEOMDIST(A3,n,D,M)*(1-
Se)^A3*Sp^(n-A3) 

4 1 HYPGEOMDIST(A4,n,D,M)*(1-
Se)^A4*Sp^(n-A4) 

5 2 HYPGEOMDIST(A5,n,D,M)*(1-
Se)^A5*Sp^(n-A5) 

... ... ... 
103 100 HYPGEOMDIST(A103,n,D,M)*(1-

Se)^A103*Sp^(n-A103) 

104 Probability of having at least one infected 
animal in the test negative group 

SUM(B4:B103)/SUM(B3:B103) 
Note: this formula calculates the sum 
from x = 1 to n 

Table XVI 
A spreadsheet model to simulate the probability that there is at least one infected 
animal in a sample of n test negative animals selected from a herd of size M in 
which there are D infected animals 

 A B 

1 Input variables: 
M = herd size 

N = sample size 
D = number of infected animals in the herd 

Se = test sensitivity 
Sp = test specificity 

2 Number of infected animals in the sample Hypergeo(n,D,M) 
3 Number of uninfected animals in the sample n-B2 
4 Number of test positive animals IF(B2=0,0, 

Binomial(B2,Se))+IF(B3=0,0, 
Binomial(B3,1-Sp)) 

5 Probability of having at least one infected animal 
in the test negative group 

IF(B4>0,NA(),IF(B2>0,1,0)) 

Note: The mean of the output of cell B5 over all iterations is the estimated probability 

 

                                                 
17 An ‘IF’ statement, IF(x>D,’’,HYPGEOMDIST(x,n,D,M)(1-Se)xSp(n-x)) needs to be wrapped around the formulae in 
cells B3:B103 to ensure that x is not greater than D, otherwise an error will be returned 
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Probability that all animals are test negative
M = 200, n = 10 (M/n = 20)
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M = 200, n = 20 (M/n = 10)
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M= 200, n = 20 (M/n = 10)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

prevalence

pr
ob

ab
il

it
y

hypergeometric binomial  
Probability that all animals are test negative

M = 200, n = 50 (M/n = 4)
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Probability of at least one infected animal
M= 200, n = 50 (M/n = 4)
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M = 200, n = 100 (M/n = 2)
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M= 200, n = 100 (M/n = 2)
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Figure 46 
A comparison of the hypergeometric and binomial methods of calculating the 
probability of obtaining negative test results and the probability of at least one 
infected animal being included in the group of test negatives 
Four different sample sizes (n) are compared. Herd size (M) = 200, test sensitivity (Se) = 90% and test 
specificity (Sp) = 98% 

Figure 46 compares the results obtained from the hypergeometric and binomial methods of 
calculating the probability of obtaining negative test results and the probability of at least 
one infected animal being included in the group of test negatives for four different sample 
sizes. For small sample sizes, where the herd size is at least ten times the sample size, there 
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is good agreement between the hypergeometric and binomial calculations. As the ratio M:n 
becomes smaller, the binomial calculation becomes less accurate. However, given the level 
of imprecision that is nearly always present in risk assessment models, the magnitude of the 
difference may not be significant. Considering the simplicity of calculating binomial 
probabilities, there is considerable appeal in avoiding hypergeometric calculations wherever 
it is reasonable to do so. 

_____________ 
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Chapter 6 
Determining a distribution to represent a variable18  

Sources of information 
There are essentially two sources of information from which a distribution can be 
developed to represent a variable in a risk assessment model: 

– available empirical data 
– expert opinion. 

Three approaches are available to develop a distribution from these sources of information: 

– fitting empirical data to a distribution using either a parametric or a non-parametric 
approach 

– a purely subjective approach using expert opinion 
– a combined approach that incorporates empirical data and expert opinion using Bayes’ 

theorem. 

Before deciding on which approach to use, it is important to consider the amount and 
relevance of the available information: 

– if there are abundant representative data then either parametric or non-parametric 
techniques can be used to develop a distribution to model variability. This type of 
distribution is called a first order distribution (Chapter 7) 

– if there are few representative data then either parametric or non-parametric techniques, 
which account for uncertainty in the parameters of the distribution, can be used to 
generate a second order distribution (Chapter 7) 

– if there is a complete absence of data or the data that exist are either scarce or not 
representative, a subjective approach utilising expert opinion is appropriate 

– if there are abundant non-representative data, for example experimental results from a 
different species, then a mixed approach may need to be employed whereby expert 
opinion is used to modify the distribution. 

Even for data that meet stringent assumptions regarding independence and random 
sampling, there may be random fluctuations (non-systematic errors) in the sample data that 
make it difficult to select the ‘true’ distribution that best represents the data. Interpreting 
data inevitably requires subjective input such as, for example, assuming that the data 
represent a random sample from some probability distribution. 

Determining a distribution where there are abundant 
representative data 
Where there are abundant representative data a probability distribution that models 
variability can be specified from either the parameters, which are derived by fitting 
empirical data to a theoretical distribution using parametric techniques, or directly from the 
data using non-parametric techniques. 

                                                 
18 The general reference for this chapter is Vose D. Risk Analysis, A Quantitative Guide. John Wiley & Sons Chichester, 
2000 
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Parametric techniques 
Parametric techniques involve fitting empirical data to a theoretical distribution, such as the 
normal or Poisson, which is then used to represent the data in a risk assessment model. 
Software packages are available, for example BestFit19, that make distribution fitting ‘easy’. 
Since it is assumed that the parameters derived from the data for the ‘best fitting 
distribution’ are the population parameters, the distribution chosen to model the data will 
be a first order distribution, which models variability (Chapter 7). However, if these 
software packages are not used with due care, an inappropriate distribution may be chosen. 
A distribution should not be selected arbitrarily from those that best ‘fit’ the data. Rather, 
careful consideration needs to be given to the underlying phenomena that generated the 
data so that the distribution chosen is both plausible and provides a good fit to the data. 
Several techniques are available to assist in selecting an appropriate distribution including 
goodness-of-fit statistics and probability plotting. 

Goodness-of-fit statistics  

Goodness-of-fit is the degree to which a fitted distribution matches the observed data. 
There is a wide variety of goodness-of-fit statistics, the most common of which are 
discussed below. The parameters for a fitted distribution under investigation are 
determined most commonly by the maximum likelihood estimators (MLEs). The MLEs are 
the parameter values that would give the highest probability of producing the observed 
data, given that the distribution type is correct. Goodness-of-fit statistics are calculated and 
compared for appropriate distribution functions to find the best fitting distribution.  

a) Chi-squared test 

The Chi-squared test is very flexible and can be used to test any assumption about a 
distribution. However, its major limitation is that it requires the data to be grouped so 
that some of the information from the original data is lost. As a guide at least twenty-
five data points should be available before applying a Chi-squared test. 

b) Kolmogorov-Smirnov test  

The Kolmogorov-Smirnov test compares a stepwise empirical cumulative density 
function (CDF) with the CDF of the hypothesised distribution. It identifies the 
maximum discrepancy between the two distributions, but takes no account of how the 
distribution fits the rest of the data. As a result, it may indicate a poor fit for an 
empirical distribution that generally fits the hypothesised distribution, apart from a 
single large discrepancy. On the other hand, it may indicate a good fit for a distribution 
that is a poor fit overall, but does not have such a large discrepant single value. 

c) Anderson-Darling test 

The Anderson-Darling test is a sophisticated version of the Kolmogorov-Smirnov test 
that assesses the discrepancy between the empirical and theoretical cumulative 
distributions over the entire distribution range. As a result, it is influenced much less by 
one large discrepant value and is generally more useful than the Kolmogorov-Smirnov 
test. 

                                                 
19 Palisade Corporation, Newfield, New York 
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Probability plotting 

Probability plotting is a subjective technique that is relatively easy and intuitive to use. It is 
advantageous in situations where one wishes to obtain a good fit for a particular portion of 
a distribution, such as the upper tail, and to retain a reasonable fit for the remainder of the 
distribution. Probability plotting involves graphing the data against a transformation of the 
data appropriate to the particular theoretical distribution under investigation. If there is a 
good fit there will be a straight line, although there will inevitably be some deviation. The 
extent of the deviation that constitutes a rejection of the proposed distribution is purely 
subjective. 

Non-parametric techniques 
Non-parametric techniques involve fitting data to an empirical distribution. They offer a 
number of advantages, as they are intuitive and simple to use. A particular form or shape of 
a distribution does not need to be assumed and inappropriate or confusing theoretical 
(parametric) distributions can be avoided. Empirical distributions can be defined for either 
continuous or discrete data: 

Continuous data 

Either the cumulative or histogram distribution function (Chapter 4) can be used to 
convert a set of data into an empirical (non-parametric) distribution, provided the data are 
continuous and cover a reasonable range: 

Cumul(minimum, maximum,{xi},{pi})  
Histogrm(minimum, maximum,{pi})  

Discrete data 

A discrete distribution can be defined for small data sets by using the data points 
themselves in a discrete or general distribution. For large data sets it might be more 
convenient to arrange the data into a histogram format and use either a histogram function 
or a cumulative function. The following distributions are discussed in Chapter 4: 

Cumul(minimum, maximum,{xi},{pi}) 
Discrete({xi},{pi}) 
Duniform({xi}) 
General(minimum, maximum,{xi},{pi}) 
Histogrm(minimum, maximum,{pi}) 

Determining a distribution where there are few representative 
data 
Where there are few representative data the parameters used to specify a distribution will 
be uncertain. Since the data are representative, the source of the uncertainty is random 
sampling error, which can be quantified by a sampling distribution. Confidence intervals 
for the parameters that specify a distribution, such as the mean and standard deviation, can 
then be estimated from the appropriate sampling distribution. Two approaches will be 
discussed in this section to derive a distribution for an uncertain parameter. These are 
classical statistical techniques and bootstrap simulation. A third approach, Bayesian 
inference is also discussed in this chapter. 
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Classical statistics 
Classical statistical techniques usually assume that the underlying distribution of a data set is 
binomial or normal. For example, if we can assume that the underlying distribution is 
normal, the sampling distribution for the mean is the Student’s t distribution and for the 
standard deviation, the Chi-squared distribution. The uncertainty associated with the 
estimate of the population mean, μ, is modelled by: 
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where Student(n-1) is the Student’s t distribution with n-1 degrees of freedom, n is the 
sample size and x  and s are the sample mean and sample standard deviation respectively. 

As the number of samples increases, the Student’s t-distribution approaches the normal 
distribution. For sample sizes greater than thirty, the normal distribution function can be 
used to estimate the uncertainty in the estimate of the population mean: 
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The uncertainty associated with the estimate of the population standard deviation is 
modelled by: 

 
 1

1
2





nChisq

sn  

where Chisq(n-1) is the Chi-squared distribution with n-1 degrees of freedom. 

These sampling distributions enable us to capture the uncertainty associated with the 
estimates of the population mean (μ) and standard deviation (). They are used as inputs 
into a normal distribution function, which is then used to specify a second order normal 
distribution that enables us to encode and propagate variability and uncertainty separately 
(Chapter 7): 

X = Normal(μ,) 

where a single underscore denotes a first order random variable with constant parameters 
and the double underscore denotes a second order random variable with uncertain 
parameters. 

Suppose we want to estimate the average weight of sheep in a flock but we only have 
information on the weights of ten sheep chosen at random. Since the sheep were randomly 
selected, we could be confident that the data are representative, albeit scarce. In addition, 
based on past observations, it is reasonable to assume that the weight of sheep is 
distributed normally. Table XVII is a spreadsheet model set up to derive a sampling 
distribution for the mean and standard deviation of the weight of all sheep in the flock, 
while Figure 47 depicts their respective sampling distributions. These distributions were 
obtained by running a simulation of 4,000 iterations on cells B14 and B15 in Table XVII. 
We are now in a position to define a second order distribution of sheep bodyweight 
(Fig. 48a). This is done by randomly selecting a value from each sampling distribution, 
inserting each value into a normal distribution function, plotting its graph and repeating 
this exercise a number of times. This enables us to build up a picture of possible 
distributions of weight, each of which represents a first order distribution, while together 
they form a second order distribution (Chapter 7). 
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Table XVII 
A spreadsheet model to determine a sampling distribution for the population mean 
and standard deviation based on the weight of ten sheep collected at random 
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Figure 47 
Hypothetical sampling distributions of the mean and the standard deviation of the 
weight of sheep in a flock based on ten samples collected at random 

How important is the overall impact of the uncertainty associated with the mean and 
standard deviation which results from a small sample size? Is it important to model 
variability and uncertainty separately or is it reasonable to ignore the impact of uncertainty 
and model them together? Accounting for uncertainty can be complex and time 
consuming, so we need a relatively straightforward method to help us decide if it is really 
worth the effort. We can get a good idea by setting the model up and, initially, running it as 
if it were a first order model, where the sampling distributions for the mean and standard 
deviation are set to their expected values: 

X = Normal(48.5,4.58) 

Then we need to run it as a ‘mixed’ model where the uncertain and variable components 
are simulated together: 

X = Normal(μ,) 

Where: 
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 A B 

1  Weight (kg) 
2  50 
3  54 
4  46 
5  47 
6  44 
7  52 
8  47 
9  56 
10  41 
11  48 
12 Sample mean x  AVERAGE(B2:B11) 
13 Sample standard deviation s STDEV(B2:B11) 
14 Sampling distribution of the population mean μ Student(9)*(B13/SQRT(10))+B12 
15 Sampling distribution of population standard variation  SQRT(9*(B13^2)/Chisq(9)) 
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We can then compare the results, as has been done in Figure 48b, which indicates that the 
impact of the uncertainty appears to be insignificant, as there is very little difference 
between these distributions. The means are identical and, while there is some inflation in 
the variance in the ‘mixed’ model, as reflected in the tails of the distribution, the magnitude 
of the difference is minor. In this particular case we could reasonably ignore the impact of 
uncertainty in modelling the bodyweight of sheep in the flock based on a random sample 
of ten animals. If we chose to use the ‘mixed’ distribution we would need to truncate it to 
avoid unrealistically low or high values. For example, we could use Tnormal(μ,,35,70) 
where 35 and 70 represent the minimum and maximum bodyweights we would expect in 
the flock.  
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a) a series of possible probability density curves of the bodyweight of sheep with the expected value curve plotted 

as a thick line with diamond markers 

b) a cumulative probability plot investigating the impact of the uncertainty associated with random sampling error 

Figure 48 

Bootstrap simulation 
Bootstrap simulation can be used to derive a distribution to represent an uncertain 
parameter, such as the mean or standard deviation. The general approach is to define a 
sampling distribution for the data, which consist of n samples, then collect n random 
samples with replacement from the data set and calculate the parameter of interest. This 
process is repeated many times and the results from each iteration are combined to 
produce a sampling distribution for the parameter. Depending on the circumstances either 
a non-parametric or a parametric approach may be used. 

Non-parametric bootstrap simulation 

Non-parametric bootstrap simulation is a powerful technique that does not require any a 
priori assumptions regarding the shape of the sampling distribution. Two options are 
available. We can either use the actual data and resample them, or fit an empirically based 
cumulative distribution to the data and sample from this empirical distribution. 

Using the sheep bodyweight example, from the preceding section, we can set up a 
spreadsheet model to perform a non-parametric bootstrap simulation to define a sampling 
distribution for the uncertain parameter. We can either use the data directly by employing a 
discrete uniform function, where each data point has an equal probability of occurrence 
(Table XVIII), or develop a cumulative distribution (Table XIX) to define a sampling 
distribution of data. We then replicate the appropriate function n times, where n equals the 
number of samples in the original data set, so that we obtain n random samples from the 
sampling distribution. This is effectively sampling with replacement and constitutes a 
bootstrap replicate from which the mean and standard deviation are calculated. 
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A simulation is run and the results from each iteration are combined to produce a sampling 
distribution for each uncertain parameter. Figure 49 compares the outputs from these two 
models for the sampling distribution of the mean after running a simulation on cells C12 
(Table XVIII) and D12 (Table XIX).  

Table XVIII 
A non-parametric bootstrap simulation model that uses a discrete uniform function 
to define a sampling distribution of the data which is then used to define a 
sampling distribution for the uncertain parameters, the population mean (μ) and 
standard deviation () 

 A B 

1 Weight (kg) Non-parametric function 
2 50 Duniform(A2:A11) 
3 54 Duniform(A2:A11) 
4 46 Duniform(A2:A11) 
5 47 Duniform(A2:A11) 
6 44 Duniform(A2:A11) 
7 52 Duniform(A2:A11) 
8 47 Duniform(A2:A11) 
9 56 Duniform(A2:A11) 
10 41 Duniform(A2:A11) 
11 48 Duniform(A2:A11) 
12 Replicate mean = AVERAGE(B2:B11)  
13 Replicate standard deviation = STDEV(B2:B11)  

Table XIX 
A non-parametric bootstrap simulation model that fits an empirically based 
cumulative distribution (CDF) to the data. Samples are then drawn from the CDF 
to derive a sampling distribution for the uncertain parameters. The cumulative 
percentile is calculated by 

1n

i  for I = 1, 2, ..., n, where n = sample size 

 A B C 

1 Cumulative percentile Weight (kg) Non-parametric function 
2 9% 41 Cumul(41,56,B2:B11,A2:A11) 
3 18% 44 Cumul(41,56,B2:B11,A2:A11) 
4 27% 46 Cumul(41,56,B2:B11,A2:A11) 
5 36% 47 Cumul(41,56,B2:B11,A2:A11) 
6 45% 47 Cumul(41,56,B2:B11,A2:A11) 
7 55% 48 Cumul(41,56,B2:B11,A2:A11) 
8 64% 50 Cumul(41,56,B2:B11,A2:A11) 
9 73% 52 Cumul(41,56,B2:B11,A2:A11) 
10 82% 54 Cumul(41,56,B2:B11,A2:A11) 
11 91% 56 Cumul(41,56,B2:B11,A2:A11) 
12 Replicate mean = AVERAGE(C2:C11) 
13 Replicate standard deviation = STDEV(C2:C11) 
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Figure 49 
A comparison of the output from two non-parametric bootstrap simulations where 
the sampling distribution for the uncertain parameter, the mean (μ) was derived 
either directly from the data using a discrete uniform function or from a cumulative 
distribution of the data 

Parametric bootstrap simulation 

In some circumstances, we may be able to reasonably assume that the underlying 
distribution from which the data are derived belongs to a particular family of distributions, 
for example the normal, Poisson, exponential or binomial distributions. For this reason, we 
can use the relevant distribution to define a sampling distribution to represent the data. 
Table XX outlines a parametric bootstrap simulation model for the sheep bodyweight 
example from the preceding section. As already noted, we can reasonably assume that the 
weight of sheep is distributed normally. For this reason, the normal distribution function 
can be used to determine a sampling distribution. Firstly, we need to calculate the mean 
and standard deviation of the data and use these results in a normal distribution function, 









sxNormal , . This function is replicated n times, where n equals the number of samples 

in the original data set, so that we obtain n random samples. This is effectively sampling 
with replacement and constitutes a bootstrap replicate from which the mean and standard 
deviation are calculated. A simulation is run and the results from each iteration are 
combined to produce a sampling distribution for each uncertain parameter. Figure 50 
compares the results obtained by running a parametric bootstrap simulation for the 
sampling distribution of the mean on cell C12 (Table XX) with the results obtained from 
the classical statistical approach (Table XVII, Figure 47). The distribution derived from 
bootstrap simulation is somewhat narrower than the distribution derived from classical 
statistical methods and tends to underestimate the uncertainty. There are a number of 
techniques available to correct for this ‘bias’, such as the bias corrected and accelerated 
method. Discussion of such methods is beyond the scope of this text and the reader is 
referred to such books as Vose (2000)20 or Cullen and Frey (1999)21. 

                                                 
20 Vose D. (2000). – Risk Analysis: A Quantitative Guide. John Wiley & Sons, Chichester. 

21 Cullen A.C. & Frey H.C. (1999). – Probabilistic Techniques in exposure Assessment. A Handbook for dealing with 
Uncertainty in Models and Inputs. Plenum Press, New York. 
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Table XX 
A parametric bootstrap simulation model that uses the normal distribution function 
to define a sampling distribution for the data which is then used to define a 
sampling distribution for the uncertain parameters, the population mean (μ) and 
standard deviation () 

 A B C 

1  Weight (kg) Parametric function 
2  50 Normal($B$12,$B$13) 

3  54 Normal($B$12,$B$13) 

4  46 Normal($B$12,$B$13) 

5  47 Normal($B$12,$B$13) 

6  44 Normal($B$12,$B$13) 

7  52 Normal($B$12,$B$13) 

8  47 Normal($B$12,$B$13) 

9  56 Normal($B$12,$B$13) 

10  41 Normal($B$12,$B$13) 

11  48 Normal($B$12,$B$13) 

12 Replicate mean AVERAGE(B2:B11) AVERAGE(C2:C11) 

13 Replicate standard deviation STDEV(B2:B11) STDEV(C2:C11) 
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Figure 50 
A comparison of the output from a parametric bootstrap simulation, where the 
sampling distribution for the uncertain parameter is derived using a normal 
distribution function, with classical statistical methods. The inherent assumption is 
that the data are derived from a normal distribution 

Using expert opinion to determine a distribution where data 
are non-existent, scarce or not representative  
If there is a complete absence of data, or the data that exist are either scarce or not 
representative, then a subjective approach utilising expert opinion is appropriate. Potential 
sources of bias, dealing with disagreement among experts, eliciting expert opinion and 
choosing an appropriate distribution are important issues that need to be considered 
carefully.  
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Bias 
There are a number of human behaviours that lead to biases in one’s judgements 
estimating a distribution’s parameters or selecting an appropriate probability distribution. 
For example, individuals have a tendency to weight information which comes readily to 
mind; to be strongly influenced by small unrepresentative sets of data with which they are 
familiar; to be overconfident and estimate uncertainty too narrowly; to resist changing their 
mind in the face of new information; to try to influence decisions and outcomes by casting 
their beliefs in a particular direction; to state their beliefs in a way that favours their own 
performance or status; to knowingly suppress uncertainty in order to appear 
knowledgeable; and, to persist in stating weakening views to simply remain consistent over 
time (Cullen and Frey, 1999). 

Expert disagreement 
In cases of expert disagreement, it is usually best to explore the implications of the 
judgements of different experts separately to determine whether substantially different 
conclusions are likely. If the conclusions are not significantly affected, we can conclude that 
the results are robust despite the disagreement among experts. In some cases, experts may 
not disagree about the body of knowledge; rather, they may draw different inferences from 
an agreed body of knowledge. In such cases we need to make a judgement about which 
expert is more authoritative for the problem under scrutiny (Cullen and Frey, 1999).  

Eliciting expert opinion 
Psychological research has shown that accurate subjective probability judgements cannot 
be elicited simply by asking an individual to provide a probability. The methods of 
reasoning, or heuristics, employed when generating subjective estimates consistently 
introduces biases, which can be quite large, regardless of whether the individual is 
experienced in providing estimates and is familiar with probability theory or is a novice in 
this field (Merkhofer, 1987). Biases may also be introduced by the methodology used to 
elicit the opinion and then by the means in which it is modelled. 

To minimise the impact of bias in eliciting expert opinion, a workshop method (Panel 1) 
has been developed jointly by the Veterinary Laboratories Agency in the United Kingdom 
and the Food and Agriculture Organization of the United Nations22. The method is based 
on a modified Delphi technique and is preferably carried out over two to three day period. 
Experts are gathered in one room and given a questionnaire that is answered individually 
and anonymously without discussion among them. The anonymity of the answers allows 
biases introduced through group discussion to be reduced. 

The answers are then analysed and the results presented, followed by a facilitated 
discussion. 

The questionnaire is given again, preferably the following day under the same conditions. 
This allows sufficient time for the experts to think about the points raised in the discussion 
and, if appropriate, take the opportunity to amend their answers given in the first 
questionnaire. 

 

                                                 
22 Lisa Gallagher, Veterinary Laboratories Agency, Weybridge, United Kingdom, 2001. Personal communication with 
Noel Murray 
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Panel 1: The workshop method23 
Introduction 
– Explain the background to the work and aims of the workshop 
– Briefly introduce risk analysis, the use of expert opinion and probability theory 
– Explain the questions to be asked, definitions used within the questions and assumptions made 

Conditioning the experts 
– Explain the importance of accurate estimates, emphasising that this is an elicitation of knowledge, not a 

test of knowledge 
– Provide any data that may be available associated with the question(s) being asked in an easily understood 

format 

Questionnaire 1 
– Conduct a pilot questionnaire prior to the workshop with a different group of individuals to insure that 

each question is clear and to gauge how long it will take to answer 
– Allow the questionnaire to be answered individually and anonymously 
– Ensure that the questionnaire is clear, easy to understand and not too long. Use decomposition – break 

the questions down into parts 
– Ask experts to provide estimates for the maximum and minimum values followed by a most likely value 

for each question. Asking for estimates in this order reduces anchoring bias 
– Ask the experts to provide percentage estimates rather than probabilities. Percentages are conceptually 

easier to estimate 
– Provide aids such as computer software, graph paper or pie charts to help experts visualise percentages 
– Allow enough time during the workshop to complete the questionnaire 

Analysis 1 
– Produce Beta-PERT distributions describing each expert’s uncertainty around each question using the 

minimum, most likely and maximum values elicited 
– Combine the distributions from each expert regarding a particular question, for example, using a discrete 

distribution, using appropriate weighting for each expert 

The discussion 
– Use a facilitator to ensure that all experts are equally included in the discussion to allow a free flow of 

information between experts 
– Discuss the combined distribution for each question in turn 

Questionnaire 2 
– Present the questionnaire to the experts again to allow them to amend their previous answers, if 

appropriate 

Analysis 2 
– Analyse the answers to Questionnaire 2 as previously described 
– Answers from subsidiary experts may not be included, depending on their degree of expertness. This 

should be determined before the commencement of the workshop 

Results 2 
– Provide experts with preliminary results as soon as possible after the workshop and send out a validation 

questionnaire to ensure results are reproducible 
– Provide experts with the final results as soon as possible 
– Invite feedback on the usefulness of the results and the process itself 

A maximum of twenty experts is suggested as a manageable number for a workshop. The 
choice of expert is crucial. Each one should be impartially selected through a consultative 
process based on of their knowledge for the given subject. Biases may be introduced if the 
choice of expert is motivated by, for example, political or commercial reasons. The experts 
should also come from a variety of disciplines concerned with the subject in question, for 
example, veterinarians, scientists and policymakers. However, the inclusion of subsidiary 
experts who may not be quite as expert as a selected group of core experts can be useful. 
Subsidiary experts may provide extreme values in their estimates, which can be used to 
generate discussion and provide evidence of overconfidence, overestimation or 
underestimation. Discussion of these extreme values can be used to reduce biases and 
obtain more accurate estimates from the second questionnaire. Although it may not be 

                                                 
23 Lisa Gallagher, Veterinary Laboratories Agency, Weybridge, United Kingdom, 2001 
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appropriate to include the estimates of subsidiary experts in final analysis, such a decision 
should be made prior to the workshop. 

Choosing an appropriate distribution to model expert opinion 
The choice of an appropriate distribution depends on the nature of the problem, the type 
of information available and whether its parameters are intuitive. Table XXI provides some 
examples of the most useful distributions used for modelling expert opinion, together with 
their parameters. These distributions have been discussed in detail in Chapter 4. 

Table XXI 
Examples of some useful distributions used to model expert opinion 

Distribution Parameters 

Cumulative Minimum, maximum,{xI}, {pi} 
Discrete {xi}, {pi} 
General Minimum, maximum,{xi}, {pi} 
PERT Minimum, most likely, maximum 
Triangular Minimum, most likely, maximum 
Uniform Minimum, maximum 

 

It should be noted that small changes made to a cumulative plot may result in significant 
distortions to its corresponding relative frequency plot (Fig. 51). For this reason, the 
cumulative distribution should be used with caution when modelling expert opinion and 
the impact of any changes made directly to it to reflect an expert’s opinion should be 
investigated by examining its corresponding probability density plot.  
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Figure 51 
An example of how small changes in a distribution’s cumulative plot can 
dramatically distort the shape of its corresponding probability density plot 

Determining a distribution by combining empirical data and 
expert opinion  

Bayesian inference 
Bayesian inference is a useful, powerful technique whereby newly acquired empirical data 
can be combined with existing information, whether that information is itself based on pre-
existing empirical data or on expert opinion, to improve an estimate of the parameter(s) 
used to characterise a distribution. 
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While a Bayesian approach is sometimes criticised as being subjective, it should be 
remembered that classical methods are also unavoidably subjective in so far as the choices 
made for using particular distributions, the confidence intervals and P-values chosen, and 
in accepting the assumptions inherent in the underlying statistical models. P-values, for 
instance, provide an indirect measurement of the evidence for or against a particular 
hypothesis and should not be interpreted as a final probability. They rely on proof by 
contradiction with high probability and indicate whether the hypothesis being investigated 
is sufficiently unlikely. P-values can be very deceptive as they involve probabilities of 
unobserved data that are more extreme than the observed data. On the other hand, a 
Bayesian approach provides direct evidence as it shows how the initial probability estimate 
is altered by the data. 

Bayesian inference is a natural extension of Bayes’ theorem (Chapter 3) and provides a 
powerful and flexible means of learning from experience. As new information becomes 
available it enables our existing knowledge to be easily and logically updated. It explicitly 
acknowledges subjectivity and describes the learning process mathematically. We begin 
with an opinion, however vague, and modify it as new information becomes available. 
Bayesian inference involves three steps: 

a) determining a prior estimate of a parameter in the form of a probability distribution that 
expresses our state of knowledge (or ignorance) before any observations are made. The 
prior distribution is not necessarily dependent on data and may be purely subjective. 

b) finding an appropriate likelihood function for the observed data. The likelihood 
function calculates the probability of observing the data for a given value of the prior 
estimate of the parameter. The shape of the likelihood function embodies the amount 
of information contained in the data. If the information is limited, the likelihood 
function will be broadly distributed, whereas if the information is significant, the 
likelihood function will be tightly focused around a particular parameter value. 

c) calculating the posterior (i.e. revised) estimate of the parameter by multiplying the prior 
estimate and the likelihood function, then normalising the result so that the area under 
the curve sums to one. 

The posterior distribution describes our state of knowledge of the parameter after we have 
acquired additional information. If it is similar to the prior distribution, then the 
information gained will confirm our pre-existing belief or state of knowledge. On the other 
hand, if it is significantly different to the prior we will have acquired some important new 
information. In fact, in many situations, as more information becomes available it is likely 
that the influence of the prior distribution will wane. 

Bayesian inference can be helpful in elucidating the influence of different prior 
assumptions relative to the information available, and to determining the amount and 
quality of data necessary for convergence to the same posterior distribution. It offers a 
transparent means of modelling expert opinion, which is explicitly acknowledged in the 
prior distribution. 
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Prior distributions 
As discussed above, a prior distribution expresses our state of knowledge before any new 
observations are made. Depending on the circumstances there are several options available: 

Uninformed priors 

An uninformed prior does not provide any additional information to a Bayesian inference 
other than establishing a possible range. For example, in some circumstances we may not 
have any information about the likely prevalence of infection within a herd. We might 
assume that, for a particular disease, the prevalence is likely to range from 0% to 30% and 
that any value within this range is equally as likely as any other value. This constitutes a 
uniform prior, Uniform(0,0.3), and has no influence on the Bayesian inference calculation, 
apart from establishing a range (Fig. 52). 
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Figure 52 
A uniform distribution to represent an uninformed prior 

In some circumstances the parameter we are estimating may be expressed (re-
parameterised) in a number of different ways. For example, we might want to estimate the 
average number of disease outbreaks per year ( ). If we assume that each outbreak is 
independent of every other outbreak and that there is a constant and continuous 
probability of a disease outbreak occurring throughout the year, then the outbreaks follow 

a Poisson process. The average number of outbreaks per year can also be expressed as

1 , 

where  is the mean interval between events. We might think it is reasonable to assign an 
uninformed prior in the form of a uniform distribution, Uniform(0,x), to  . However, we 

could have just as easily parameterised the problem in terms of . Since 


 1
  our prior 

distribution would be  xUniform ,0

1  which, as Figure 53 shows, is clearly not uninformed 

with respect to . A useful technique in these circumstances to minimise the effects of re-

parameterisation is to set up the prior distribution for  as 

1  and for  as 


1 , that is we 

are using  as a prior for   and vice versa. As a result, the prior distribution is 
transformation invariant. While such a distribution still does not appear to be uninformed 
(Fig. 54) it is the best that can be achieved in the circumstance and gives the same answer 
whether we undertake an analysis from the point of view of   or . 
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Figure 53 
A prior distribution for  expressed as  

 

 
(simulation results over 1,000 iterations) 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lambda

pr
ob

ab
il

it
y

 
Figure 54 
A prior distribution for lambda  

 

Informed priors 

An informed prior may be based on actual data or be purely subjective. 

A conjugate prior has the same functional form as the likelihood function and leads to a 
posterior distribution belonging to the same distribution as the prior. Conjugate priors are 
often called convenience priors as we can determine the posterior distribution directly 
without having to construct a model as, for example, in Table XXIV. Table XXII lists two 
useful conjugate priors and their associated likelihood and posterior distributions. 

 


 1
prior

 5,0

11

Uniform



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Table XXII 
Conjugate priors and their associated likelihoods and posterior distributions 

Parameter to 
estimate Conjugate prior Likelihood Posterior 

Probability p Uninformed prior: Beta(1,1) 
note: this is equal to Uniform(0,1) 

Binomial Beta(x+1,n-x+1) 

 Informed prior: Beta(1,2) Beta(1+x,2+n-x) 
where: 

x = number of successes, e.g. 
test positive animals 

n = number of trials, e.g. 
animals tested 

Mean number 
of events per 
unit interval   

Uninformed prior: prior(  )  1/  Poisson Gamma(x,
t

1
) 

 Informed prior: Gamma(a,b) 

where 
a = the number of events, e.g. disease 

outbreaks 
b = the mean interval between events, 

e.g. years between outbreaks 

Gamma(a+x,
tb

b

1
) 

where 
x = the number of events 

observed (e.g. outbreaks) 
in the interval, t 

t = the unit interval (time, 
litres, kilograms etc.) 

Likelihood functions 
The likelihood function calculates the probability of observing the data for a given value of 
the prior estimate of a parameter. The shape of the likelihood function embodies the 
amount of information contained in the data. Suppose we sample n animals from a herd, 
test them and find that there are x reactors. To determine the likelihood that there are x 
reactors, given a prior estimate of the prevalence of infection, p, we could use the binomial 
distribution function in Excel: 

      0,11,, SppSepnxBINOMDISTxXP   

where:  p = the prevalence of infection,  
n = the number of animals tested, 
Se = test sensitivity and 
Sp = test specificity. 

There are a number of other useful probability distribution functions that can be used as 
likelihood functions, depending on the circumstances. These include the Poisson, 
hypergeometric and negative binomial. 

Posterior distributions 
The posterior distribution is the revised estimate of the parameter we are investigating and 
is obtained simply by multiplying the prior distribution and the likelihood function. Since 
the individual probabilities calculated by the likelihood function are independent of each 
other, the resulting posterior probabilities need to be normalised. This ensures that the area 
under the curve of a continuous distribution equals one and that the probabilities for a 
discrete distribution all add up to one. Two functions provided in @RISK enable 
normalisation to be carried out automatically. The Discrete({x},{p}) function is used for 
discrete distributions and the General(min,max,{x},{p}) function is used for continuous 
distributions. 
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An example of a Bayesian inference calculation: developing a 
distribution for an uncertain parameter p, the prevalence of infection in 
a chicken flock 

Uninformed prior 

The simplest situation is where we have no information about the disease status of a 
chicken flock. That is, our prior opinion about the flock’s disease status is uninformed. 
Suppose the flock consists of several thousand chickens and we decide to test some of 
them using a test with a sensitivity of 80% and a specificity of 98%. What could we say 
about the disease status of the flock if we tested thirty chickens and they were all negative? 
Table XXIII outlines a spreadsheet model to derive a posterior distribution for the 
uncertain parameter p, the prevalence of infection. The resulting distribution is shown in 
Figure 55. In this case the posterior distribution is equal to the likelihood function, as the 
prior has no influence, apart from establishing a range. 

Table XXIII 
A spreadsheet model for a Bayesian inference calculation 

 A B C D E 

1 n = chickens tested 30 Formulae: 
A8:A258 {0.0, 0.001, 0.002, 0.003,…., 0.25} 
B8:B258 {1} 
C8:C258 {BINOMDIST(0,n,A8*Se+(1-A8)*(1-Sp),0)}
D8:D258 {B8*C8} 
E8:E258 {D8/SUM(D8:D258)} 

2 Se = test sensitivity 80.0% 
3 Sp = test specificity 98.0% 
4   
5   
6   
7 Prevalence (p) Prior probability 

density 
Likelihood 
P(T-|D+) 

Posterior Normalised posterior 
probability 

8 0.00% 1 5.45E-01 5.45E-01 2.44E-02 
9 0.10% 1 5.33E-01 5.33E-01 2.38E-02 
10 0.20% 1 5.20E-01 5.20E-01 2.33E-02 
… … … … … … 
258 25% 1 7.02E-04 3.07E-11 3.14E-05 
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Figure 55 
A posterior distribution for an uncertain parameter p, the prevalence of infection in 
a flock. The prior is uninformed and thirty chickens were tested with negative 
results 
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Informed prior 

Suppose we have some information that suggests that the prevalence of disease in the flock 
is between 1 and 10% with a most likely value of 5%. If we apply the same test as in the 
previous example and tested the same number of chickens, what could we say about the 
disease status of the flock if they were all negative? In this example, as with the uninformed 
prior example, we will make the binomial approximation to the hypergeometric sample, as 
we will assume that the flock (M) is large in relation to the sample size (n), so that n is less 
than 10% of M. The calculations become more complex if a sample larger than 0.1xM is 
taken (see Chapter 6). Since we now have an informed prior we need to replace the prior 
distribution in column B of Table XXIII with a distribution to reflect this. We can use 
either a triangular or a PERT distribution as a prior (as outlined in Tables XXIV and XXV 
respectively). The main advantage of the triangular distribution is that it is easy to apply as 
we can readily obtain the appropriate densities in just one step. Although several steps are 
required to obtain the densities for the PERT distribution it offers significantly greater 
flexibility in modelling expert opinion, as discussed in Chapter 6.  

As shown in Figures 56a and 57a, the likelihood function indicates that the information 
gained by testing thirty chickens is limited. This is reflected in the respective posterior 
distributions, which have not changed much from the prior. In contrast, if we test 100 
chickens, (Figures 56b and 57b), we gain a lot more information. This is reflected in the 
likelihood function and consequently the posterior distribution.  

Table XXIV 
A prior probability density distribution (triangular) of the prevalence of infection in 
a flock of chickens where the probability that a chicken is infected is thought to be 
between 1% and 10%, with a most likely value of 5% 

 A B 

1 Prevalence (pi) Probability density f(x)* 
2 1.0% IF(A2<=ML,2*(A2-min)/((ML-min)*(max-min)),2*(max-A2)/((max-

min)*(max-ML))) 
3 1.1% IF(A3<=ML,2*(A3-min)/((ML-min)*(max-min)),2*(max-A3)/((max-

min)*(max-ML))) 
4 1.2% IF(A4<=ML,2*(A4-min)/((ML-min)*(max-min)),2*(max-A4)/((max-

min)*(max-ML))) 
5 … … 

92 10% IF(A92<=ML,2*(A92-min)/((ML-min)*(max-min)),2*(max-A92)/((max-
min)*(max-ML))) 

* The triangular distribution (Triang(a,b,c)) has a density    
  acab

ax
xf





2

 for values 

of x less than or equal to b, and a density    
  bcac

xc
xf





2

for values greater than b, 

where: a = minimum 
 b = most likely 
 c = maximum. 
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Table XXV 
A prior probability density distribution (PERT) of the prevalence of infection in a 
flock of chickens where the probability that a chicken is infected is thought to be 
between 1% and 10%, with a most likely value of 5% 

 A B C 

1 Prevalence (pi) Cumulative probability density Probability density f(x) (a) 

2 1.0% BETADIST(A2,alpha_1,alpha_2,min,max) (b) 0 

3 1.1% BETADIST(A3,alpha_1,alpha_2,min,max) (B3-B2)/(A3-A2) 

4 1.2% BETADIST(A4,alpha_1,alpha_2,min,max) (B4-B3)/(A4-A3) 

5 … … … 

92 10% BETADIST(A92,alpha_1,alpha_2,min,max) (B92-B91)/(A92-A91) 

a) The probability density for the prior distribution is obtained by differentiating the 

cumulative probability density curve: 
ii

ii

xx

yy

dx

dy









1

1  

b) The parameter values for alpha 1 and alpha 2 for the cumulative Beta probability density 
function in (BETADIST) are calculated as outlined in Chapter 6 (PERT distribution). 
Min and max are the respective minimum and maximum values of the PERT 
distribution (PERT(a,b,c)) 
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Figure 56 
A distribution for an uncertain parameter p, the prevalence of infection, in a large 
chicken flock where the prior is informed 
(densities obtained from a PERT distribution) 
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Figure 57 
A distribution for an uncertain parameter p, the prevalence of infection, in a large 
chicken flock where the prior is informed 
(densities obtained from a triangular distribution) 

An example of a Bayesian inference simulation 
Instead of calculating a Bayesian inference analysis, we could simulate it. Simulation models 
are arguably easier to construct and certainly more intuitive. For example, the model 
outlined in the preceding section for the Bayesian inference calculation could be replaced 
by the one outlined in Table XXVI. The output in cell B8, the posterior, determines 
whether the result is accepted or not. If one or more of the animals is test positive, the 
result is rejected and an error, NA(), generated. If a sufficiently large number of iterations is 
run, then a suitable number will be accepted, enabling a distribution to be plotted. The 
major drawback is that for low probability events, a large number of iterations are required. 
However, with a sufficiently fast computer, simulation is a reasonable alternative to 
calculation, as the simulated results will eventually converge with calculated values. Figures 
58a and b compare the output distributions from a Bayesian inference calculation with 
those generated by simulation for both an uninformed and informed prior. In this case, the 
posterior distribution for the Bayesian simulation is based on 10,000 iterations. For the 
uninformed prior only 228 (about 2%) of all iterations were accepted, while for the 
informed prior, 1,658 (about 17%) were accepted. Although there is some minor disparity 
between the calculated and simulated results the difference is not important. 
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Table XXVI 
A spreadsheet model for a Bayesian inference simulation 

 A B 

1 Input variables:  
M = flock size = 1,000 
N = sample size = 30 

Se = test sensitivity = 80% 
Sp = test specificity = 98% 

2 Prior for pI 

Prevalence of infected chickens p, in the flock M, 
Uninformed p1 =IntUniform(0,M)/M 
Informed p2 = PERT(0.01,0.05,0.1) 

3 Likelihood 

a)  Number of infected chickens in the group 
selected n 

IF(pi=0,0,Binomial(n,pi)) 

4 b) Number of infected chickens that test positive IF(B3=0,0,Binomial(B3,Se)) 
5 c) Number of uninfected chickens in the group 

selected 
n-B3 

6 d) Number of uninfected chickens that test 
positive 

IF(B5=0,0,Binomial(B5,1-Sp)) 

7 e) Number of test positives B4+B6 
8 Posterior for pI IF(B7=0,pi,NA()) 
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Figure 58 
A cumulative distribution for an uncertain parameter p 
The prevalence of infection in a chicken flock obtained by either a Bayesian inference 
calculation (Table XXV) or a Bayesian inference simulation (Table XXVI) 

 

_____________
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Chapter 7 
An introduction to second order modelling24 

Most quantitative risk assessment models are a blend of uncertainty and variability. 
Traditionally, most models have treated all random variables as if they were either all 
attributable to modelling variability or all to modelling uncertainty. The models have 
usually not attempted to distinguish between them. However, the situation most commonly 
encountered is likely to be when a distribution is used to model variability but the 
parameters characterising the distribution are actually uncertain. For example, if we choose 
100 chickens from a large flock known to be infected with a particular disease, we might 
want to determine how many are likely to be infected. To do this we could use the 
binomial function (Chapter 4), Binomial(n,p). The two parameters that characterise this 
distribution, n and p, can be used to represent the number of chickens selected and the 
prevalence of infection in the flock respectively. If we assume that the actual prevalence is 
5% then this distribution is simply modelling the variation in the number of infected 
chickens in the sample as both parameters, n and p, are fixed or constant values (Fig. 59). 
However, if we are unsure of the actual prevalence we could seek advice from an expert 
and model it using a PERT distribution (Chapter 4), which offers a convenient means of 
representing estimates such as the minimum, most likely and maximum, and weighting the 
probability of their occurrence. Since the prevalence (p) is now an uncertain parameter, the 
binomial distribution is modelling both variability and uncertainty. 
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a) a relative frequency plot 
b) a cumulative probability plot 

Figure 59 
A binomial distribution modelling the variation in the number of infected chickens 
in a group of 100 selected from a large flock which has a 5% prevalence of infection. 
Binomial (100,0.05) 

Separating variability and uncertainty 

A quantitative risk assessment model may be represented as  UVfR ,  where the output 
(R) is a function of the variability (V) and the uncertainty (U). If we wish to account for the 
impact of uncertainty separately, we need to disaggregate the model into variable and 
uncertain components: 

                                                 
24 The general reference for this chapter is Vose D. Risk Analysis, A Quantitative Guide. John Wiley & Sons Chichester, 
2000 
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– Variable components are those for which the exact value of the parameter(s) that 
characterise a distribution are known or where there are abundant representative data 
and it is assumed that the parameter(s) derived from these data are the population 
parameters. A probability distribution can be either specified from the parameter(s), 
which are derived by fitting empirical data to a theoretical distribution, such as the 
normal distribution using parametric techniques, or directly from the data using non-
parametric techniques (Chapter 6). These distributions, which have fixed or constant 
parameter(s), are also referred to as first order distributions. They can be represented, 
for example, as: 

),( pnBinomialx   Function 1 

where a single underscore (x) represents a first order random variable and the 
parameters, n and p, without underscores, are fixed or constant values. 

– Uncertain components are those for which the parameter(s) that characterise a 
distribution are uncertain, for example where there are few representative data, where 
there are no actual data or where the data are unrepresentative. Since the parameter(s) 
that characterise these distributions are themselves uncertain, a distribution needs to be 
specified for each one. Several techniques are available, including classical statistics, 
Bayesian inference and bootstrap, discussed in Chapter 6. The resulting distribution is 
known as a second order distribution. It allows us to encode and propagate both 
variability and uncertainty separately and is represented, for example, as: 

),( pnBinomialx   Function 2 

where p represents the uncertain parameter, which is itself represented as a first order 
random variable with constant parameters, for example PERT(0.02,0.05,0.01). A double 
underscore,  x  denotes a second order random variable. 

Variability and uncertainty are separated by developing a second order model. Initially, the 
model is built around the variability of a problem and any uncertainty that might exist is 
then overlaid.  

The two most common techniques involve:  
– calculating the variability and then simulating the uncertainty 
– simulating both variability and uncertainty. 

Can a second order model be justified? 
Is it important to model variability and uncertainty separately or is it reasonable to ignore 
the impact of uncertainty and model them together? Accounting for uncertainty can be 
complex and time consuming, so we need a relatively straightforward method to help 
decide if it is really worth the effort. We can get a good idea by setting a model up and 
running it initially as if it were a first order model where the distributions representing the 
uncertain parameter(s) are set to their expected values. Then we need to run it as a ‘mixed’ 
model where the uncertain and variable components are simulated together. We can then 
compare the results of these two models 

Continuing with the example introduced above, if we assigned a PERT(0.02,0.05,0.1) 
distribution to represent the uncertain parameter p, the prevalence of infection within the 
flock, we need to determine the expected value of this distribution and run the model as if 
it were a first order model: 

x = Binomial(n, expected value for p) = Binomial(100,0.053) Function 3 
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Then we run it as a ‘mixed’ model where variability and uncertainty are simulated together: 

x  = Binomial(100,PERT(0.02,0.05,0.1)) Function 4 

Finally, we compare the results from these two models (Fig. 60). In this particular situation 
there appears to be very little difference in the plots, so we could reasonably conclude that 
we do not need to worry about accounting for the impact of uncertainty. The most obvious 
difference is in the tails of the distribution, with very little difference between the means. 
Mixing variability and uncertainty in a model will always inflate the variance, leading to a 
greater spread in the results, particularly in the tails of the distribution. However, the 
impact on the mean will not be as great. If you are reporting the results from the tails, for 
example the 95th percentile, rather than the mean, it is worth bearing in mind that a such a 
‘mixed’ or ‘hybrid’ model will give a higher estimate. Of course, the magnitude of the 
difference may not be important. 
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a) a relative frequency plot 
b) a cumulative probability plot 

Figure 60 
A comparison of the results from running a model with an uncertain parameter 
when: 
(i) the distribution representing the uncertain parameter, the prevalence of 
infection, p, is set to its expected value (Binomial(100,0.053)) and 
(ii) variability and uncertainty are simulated together 
(Binomial(100,PERT(0.02,0.05,0.1))) 

Calculating variability, simulating uncertainty 
Continuing with our example: since the parameter p is uncertain, we need to define a 
second order distribution for the number of infected chickens, which in this case, is a 
second order random variable x : 

  1.0,05.0,02.0,100),( PertBinomialpnBinomialx   Function 5 

To separate variability and uncertainty in this function we first need to calculate the 
variability and then simulate uncertainty. We can do this by setting up a spreadsheet to 
calculate the variability in the number of infected chickens in the group selected by using 
the BINOMDIST function in Excel as outlined in Table XXVII, cells B4:AD104. We then 
sample the PERT distribution, representing prevalence, by collecting 30 Latin hypercube 
samples. We could, of course, collect more than 30, but this number should be sufficient 
for the purpose of illustration. Each sample value is used as an estimate of prevalence for a 
particular scenario in cells B2:AD2 . Latin hypercube sampling is preferred as it ensures 
that values from the entire range of the distribution will be sampled proportionally to the 
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probability density of the distribution. These values are then used as fixed or constant 
estimates of prevalence in the series of binomial calculations in columns B to AD to 
determine a distribution of the number of infected chickens in the sample. If we plot each 
of these distributions, as has been done in Figure 61, we will get a good idea of the impact 
of uncertainty. Figure 61 shows a second order distribution where each line is itself a first 
order distribution representing a particular scenario where the parameters n and p and 
constant. The distribution representing the combined effects of uncertainty and variability 
is also included in the figure and is plotted as a thick line. It clearly represents the average 
or mean of the first order distributions. 

Table XXVII  
Calculating variability, simulating uncertainty 

 A B … AD 

1 The uncertain parameter p = PERT(0.02,0.05,0.1). 30 Latin hypercube samples are collected 
and used as constant input values (cells B2:AD2) for the BINOMDIST function in cells 
B2:B104 to AD4:AD104. Each of these groups of cells constitutes a first order distribution 
binomial distribution 

2 LHC samples:→ 5.05% … 6.09% 
3 Infected chickens (x) P(X=x) … P(X=x) 
4 0 BINOMDIST($A4,100,B$2,1) … BINOMDIST($A4,100,AD$2,1) 
5 1 BINOMDIST($A5,100,B$2,1) … BINOMDIST($A5,100,AD$2,1) 
6 2 BINOMDIST($A6,100,B$2,1) … BINOMDIST($A6,100,AD$2,1) 

… … … … … 

104 100 BINOMDIST($A104,100,B$2,1) … BINOMDIST($A104,100,AD$2,1)
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Figure 61 
A second order distribution of the number of infected chickens in a sample of 100 
selected from a large flock where the uncertain parameter p, prevalence of infection, 
is represented by a PERT(0.02,0.05,0.01) distribution. 
Each fine line is a first order distribution for a particular estimate of prevalence and the 
distribution representing the output where uncertainty and variability are mixed is plotted 
as a thick line 
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A distribution of the 95th percentiles is plotted in Figure 62. The 95% confidence interval 
about the sample mean of 9 for this distribution is 8.8 to 9.5, which indicates that 
variability dominates uncertainty as the confidence interval is very narrow. If required, 
confidence limits could be determined for the entire cumulative distribution. These 
confidence limits are also known as an uncertainty band. 
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Figure 62 
A frequency distribution of the 95th percentiles from a second order distribution of 
the number of infected chickens in a sample of 100 selected 
from a large flock where the uncertain parameter p, the prevalence of infection, is 
represented by a PERT(0.02,0.05,0.01) distribution 

Suppose we want to determine the probability of including at least one infected chicken in 
a group of ten chickens. In this case the second order distribution is represented by: 

   npxP  111  Equation 61 

Since Equation 61 explicitly calculates the variation in the number of infected chickens in 
the sample, we can run a simulation directly. The resulting distribution is an example of a 
second order distribution which consists of a single line (Fig. 63). 
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Figure 63 
A second order distribution of the probability of including at least one infected 
chicken amongst a group of ten selected 
from a large flock where the uncertain parameter p, the prevalence of infection, is 
represented by a PERT(0.01,0.02,0.05) distribution 
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Simulating both variability and uncertainty 
We can also separate the effects of variability and uncertainty by simulating both. In the 
example being considered, we could simulate the variation in the number of infected 
chickens in the sample with a first order distribution function: 

),( pnBinomialx   Function 6 

However, since we are using the random sampling of simulation to model variability, it is 
no longer available to model uncertainty. Just as we did in the preceding section, we need 
to collect some Latin hypercube samples from the PERT distribution representing the 
uncertain parameter p, the prevalence of infection. Each sample value is then used as a 
constant value input into a first order distribution function (Function 6). The model is then 
run using the first Latin hypercube sample for the first simulation and so on. The Simtable 
function in @RISK can be used to automate the process by referencing the list of values 
generated by the Latin hypercube sampling of the PERT distribution (Table XXVIII). 
Despite its simplicity, simulating both variability and uncertainty can impose a significant 
computational cost as it can take considerable time to run a model, particularly if we are 
modelling rare events and need to undertake a large number of iterations. For example, if 
we collect 30 Latin hypercube samples and run 10,000 iterations per simulation, we will end 
up performing 300,000 iterations. Once the model has finished running, we can collect the 
results and plot them to produce a graph similar to that in Figure 61. 

Table XXVIII 
Simulating both variability and uncertainty 

 A B 

1 Variability Uncertainty 
2  Prevalence = PERT(0.02,0.05,.1) 
3 Number of infected chickens x = Binomial (100,B2) Simtable(B4:B33) 
4  5.05% 
5  6.09% 
6  4.4% 

… … … 
33  4.1% 

_____________
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Chapter 8 
Guidelines for developing 

a quantitative risk assessment model 

Regardless of whether one is developing a qualitative or quantitative risk assessment model, 
a number of important steps must be worked through in a systematic manner. 
Nevertheless, the development of a quantitative risk assessment model presents greater 
challenges. The steps required in developing a quantitative model include: 

– state the question to be answered clearly and explicitly 
– identify the populations of interest 
– draw a scenario tree 
– keep the model as simple as possible 
– consider if you need to account for independence between units 
– ensure a proper account is taken of independence and dependency or correlation 

between variables 
– determine the type of information available for each of the model’s inputs 
– document the assumptions, evidence, data and uncertainties for each variable 
– select an appropriate distribution for each variable  
– decide if variability and uncertainty need to be separated 
– ensure that each iteration of the model is biologically plausible 
– verify the calculations independently 
– conduct a sensitivity analysis 
– consider how the results should be presented to facilitate communication 
– commission a peer review of the model. 

Each of these will be discussed in turn. 

Determining the scope of the risk analysis 
From the outset, it is essential to have a clear understanding of the question to be 
answered, regardless of whether one is planning a qualitative or quantitative risk 
assessment. The process of defining the question is known as ‘determining the scope of the 
risk analysis’ and, if this step is not carried out properly, problems will inevitably arise in 
interpreting and communicating the results.  

When considering likelihood, the units of the numerator and denominator must be stated 
explicitly. For example, the numerator may be expressed as the probability of an event, 
several events or, more commonly, of at least one event. The denominator may be 
expressed per imported animal, per tonne of meat, per consignment, or per year etc. The 
way in which risk is expressed has an important bearing on how a model is developed and 
how the results are interpreted and communicated.  

A question might be asked: ‘What is the likelihood of introducing classical swine fever 
(CSF) with porcine embryos?’ The imprecise phrasing of this question makes it impossible 
to identify clearly the exact outcome of interest. For instance, is the decision-maker 
interested in the probability per embryo, per donor, per recipient, per consignment, per 
month or per year? Is he/she interested in the probability that the embryo donors pass all 
the tests, despite there being at least one embryo contaminated with CSF virus 
(  1 DallTP )? Or is he/she interested in the probability that at least one embryo is 

contaminated with CSF virus even though all donors have passed the tests and the 
embryos have been accepted for importation (    allTDP 1 )? The latter scenario 
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considers all the embryos, whether they are likely to be from infected donors or not, while 
the former scenario considers only embryos derived from infected donors. 

A clear and explicit question would be: 

What is the probability of at least one outbreak of CSF in (my country) each year if it is 
anticipated that between one and two thousand porcine embryos, that comply with the 
sanitary measures outlined in the Code, are imported annually from a country where CSF is 
endemic? 

The population(s) of interest 
When constructing your risk assessment model, you need to be specific about the 
population of animals you are interested in. For example, are you interested in all cattle 
herds in a country or region regardless of their disease status? Or are you interested in a 
subset of these herds with a history of disease freedom, such as those herds participating in 
an accreditation program? What animal and human populations may be exposed to the 
imported animal or animal products? 

Depicting the model graphically 
Whether one is planning a qualitative or quantitative risk assessment, a graphical depiction 
of the biological pathways provides a useful conceptual framework. It assists in conveying 
visually the range and types of pathways to be considered in a simple, transparent and 
meaningful fashion for qualitative assessments, and is an essential step if a quantitative 
model is to be developed. A graphical depiction provides a useful ‘mind map’ or visual 
representation to: 

– identify variables 
– identify relationships among variables 
– identify information requirements 
– ensure a logical chain of events in space and time 
– provide a framework for the development of a mathematical model 
– ensure the appropriate estimate is calculated 
– assist with communicating the model structure 
– clarify ideas and understanding of the problem. 

Scenario trees are an appropriate and effective way of depicting biological pathways. 
A scenario tree starts with an initial event, for example selecting some animals from a herd 
which is potentially infected. It then outlines the various pathways that lead to different 
outcomes, such as accepting animals that are test negative or the outbreak of a disease. By 
convention events are described in boxes or nodes, while the probability of an event is 
described by a line or arrow emanating from the respective box or node (Fig. 64). 
Examples of scenario trees are presented in Figures 65 to 68. 

There are alternative ways of depicting a model graphically For example, an influence 
diagram that shows how different variables interact with each other (Fig. 6925). Such 
diagrams may be of assistance in communicating some aspects of a model, but they usually 
do not provide an appropriate outline of the various pathways leading from an initial event 
to the outcome(s) of interest. Influence diagrams can rapidly become quite complex and 
difficult to follow if there are a large number of interdependent variables. 

                                                 
25 MAF Regulatory Authority. Import Risk Analysis: chicken meat and chicken meat products; Bernard Matthews 
Foods Ltd turkey meat preparations from the United Kingdom. Wellington, New Zealand, 1999 
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Initiating event

Secondary event

Tertiary event

End point (outcome of interest) does
NOT occur

Event is NOT likely

Event is likely

Event is likely

Event is NOT likely

End point (outcome of interest) does
NOT occur

End point (outcome of interest)
occurs

Event is NOT likely

Event is likely

End point (outcome of interest) does
NOT occur

 

Figure 64 
Generalised framework for a scenario tree where probabilities are examined 

Select an animal from an
infected herd

B: accept animal

Test the animal

Test the animal

Likely to be infected

NOT likely to be infected
i f d

Likely to be test positive

Likely to be test negative

Likely to be test negative

Likely to be test positive

D: reject animal

C: accept animal

A: reject animal

Scenario

 

Figure 65 
A scenario tree outlining the biological pathways leading to an animal, selected 
from an infected herd being either accepted or rejected after it has been tested 
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Select a herd
in Country A

Select a test
negative donor

Collect embryos

Herd infected

Herd NOT infected

Donor is infected

Donor NOT infected

Embryos contaminated

Embryos NOT contaminated

Transfer embryos
to recipient

Scenario

Outbreak initiated

No disease outbreak

No disease outbreak

No disease outbreak

Recipient infected

Recipient NOT infected

No disease outbreak

Import embryos
into Country B

Disease agent
survives storage

Disease agent does
NOT survive storage

No disease outbreak

 
Figure 66 
A scenario tree outlining some pathways leading to a disease outbreak following the 
importation of embryos 

Hazard of
interest

Cows milked

Milk collected, mixed
with milk from other

farms and processed

Milk contaminated

Milk NOT contaminated

Milk processed

Milk collected, mixed
with milk from other

farms

Milk processed

Cows milked, milk
collected, mixed with
milk from other farms

Herd infected

Herd NOT infected

Commodity contaminated with the hazard

Commodity contaminated with the hazard

Commodity contaminated with the hazard

Hazard NOT inactivated

Hazard inactivated

Commodity NOT contaminated with the hazard

Hazard NOT inactivated

Hazard inactivated

Commodity NOT contaminated with the hazard

Milk NOT contaminated

Milk contaminated

Commodity NOT contaminated with the hazard

Hazard NOT inactivated

Hazard inactivated

Commodity NOT contaminated with the hazard

Milk NOT contaminated

Milk contaminated

Commodity NOT contaminated with the hazard

 

Figure 67 
A release assessment scenario tree for dairy products outlining the pathways 
leading to contamination of an imported commodity 
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Exposure assessment [Part 1]

Commodity prepared
for consumption

edible scraps NOT generated
prior to preparing food

edible scraps generated prior to
preparing food

Commodity
consumed

Commodity
contaminated with
the hazard when

imported

Commodity sold for
human consumption

edible scraps generated

edible scraps NOT generated No infection
established

Scraps discarded

Scraps discarded

hazard inactivated

hazard  NOT inactivated

No infection
established

 
 Exposure assessment [Part 2] 

Swill collected 
and prepared 
as pig feed 

Scraps discarded 

scraps discarded as swill 

scraps NOT discarded as swill 

Swill fed to pigs

at least one pig becomes infected 

NONE of the pigs become infected 

Swill cooked

hazard inactivated

No infection 
established 

hazard NOT inactivated

Swill fed to pigs

Infection 
established 

Infection 
established 

at least one pig becomes infected

NONE of the pigs become infected

swill cooked

swill NOT cooked

No infection 
established 

No infection 
established

No infection 
established

 

Figure 68 
Exposure assessment scenario trees outlining the pathways leading to susceptible 
animals being exposed to contaminated imported commodity, resulting in infection 
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Simplicity 
The purpose of modelling is to represent as accurately as necessary the system of interest. 
Models are never more than an approximation of reality, so it is important to keep them as 
simple as you can without sacrificing usefulness. In most models, the outcome is driven by 
a handful of variables only. Simple models are more transparent, easier to use and explain 
to interested parties. 

Accounting for independence between units 
Some of the calculations used in quantitative risk assessments assume that the variables are 
independent. For example, Equation 62 below26, which calculates the probability of 
including at least one infected animal (D+) in a lot of n animals selected at random from a 
particular herd, assumes that each of the n animals is independent: 

   npDP  111  Equation 62 

where p = prevalence of infection within a herd. 
If we extend this scenario to selecting k lots of the same size, each from a different herd, 
and apply the same method of calculation, then from Equation 63, the probability of 
selecting at least one infected animal (D+) is: 

      knpHPDP  11111  Equation 63 

where HP is the herd level prevalence (proportion of infected herds). 
This calculation is correct so long as we assume that the prevalence of infection within 
each herd is the same. If we attempt to account for a different prevalence within each herd 
by modelling it as a PERT(1%, 2%, 5%) distribution and substitute this distribution into 
Equation 63, we would be effectively saying that each of the k lots are selected from herds 
with exactly the same prevalence of infection. This would not be biologically plausible and 
we would be ignoring the fact that prevalence is likely to vary among herds. That is, each 
herd is an independent unit. Figure 70 compares the results of two models, one ignoring 
that each herd is an independent unit and the other that considers them to be independent. 
As we can see the 50th percentiles are the same, but there is a greater spread in the results 
when we do not consider them as independent units. If we report the results based on the 
tails of the distribution, for example the 95th percentile, we will overestimate the 
probability of importing at least one infected lot. (However, in this particular case the 
magnitude of the difference between the two 95th percentiles is quite small, 23% versus 
19%.) 
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Figure 70  
A comparison of a model in which independence between units is ignored with one 
where independence between units is taken into account 

                                                 
26 This and subsequent equations have already been discussed in Chapter 5 
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The discussion on the central limit theorem in Chapter 7 gives other examples of where it 
may be important to account for independence between units.  

So, how important is it to account for independence between units? The answer will 
depend to some extent on the estimate required. If the estimate being reported is the 
median (50th percentile), it may not be critical. However, if the estimate is derived from the 
tails of a distribution, for example the 95th percentile, it will be exaggerated, although the 
difference may not be great. 

Independence and dependence or correlation between variables 
Ideally, a quantitative risk assessment model should be structured so that the input 
variables are independent. If there is a dependence or correlation between two or more 
variables, the joint probabilities for the various combinations, when based on the product 
rule, will be incorrect and implausible scenarios will be generated. Two examples are 
provided: 

– It is often assumed that the results of several tests conducted on an animal will be 
independent of each other. Depending on the circumstances, there may be a significant 
correlation between test results. For tests which measure similar biological responses to 
infectious agents, a positive correlation may occur in either an infected or uninfected 
animal. False negative results following repeated tests may occur early in the infectious 
process or late in the process if latent infections or intracellular infections occur. 

For example, we might decide to test some cattle from a particular farm for Johne’s 
disease (paratuberculosis) using an ELISA, accept only those that are test negative, 
move them to a quarantine facility and test them again using the same test, accepting 
only those that test negative. Can we reasonably assume that both test results are 
independent? Probably not, since Johne’s disease is a chronic disease. It is unlikely that 
it will have progressed in just a few weeks to the point where a previously negative cow 
has seroconverted and will thus return a positive test on the second occasion. If we 
calculate the probability of including at least one infected cow among the group of 
negative animals and do not take into account that the test results are likely to be 
significantly correlated, we will under-estimate the likelihood of introducing an infected 
animal. Of course, if the disease is an acute viral disease with a short incubation period 
and there is a continual opportunity of exposure during the interval between tests, it 
would be reasonable to assume that the test results are independent.  

– As the prevalence of furunculosis (a disease that causes skin lesions in salmonid fish) 
increases, clinical manifestations of disease are more likely to be seen. In such 
circumstances it might be expected that visual inspection and grading would become 
more effective in identifying and excluding infected fish from the processing chain. 
Since there is a correlation between disease prevalence and the effectiveness of 
inspection and grading, the two distribution defining these variables need to be linked to 
ensure that sensible scenarios are modelled. In this example, one would want to avoid 
simulating scenarios that include inputs of low disease prevalence with a high level of 
effectiveness for inspection and grading. 
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Data and information  
Whether one is conducting qualitative or quantitative risk assessments, there are many 
questions that need to be posed and answered in order for the correct data and information 
to be identified and obtained. For example: 

– Are there abundant representative data covering the population of interest so that you 
can reasonably estimate a value for each of the variable’s parameters? 

– Are the data representative of the population of interest but based on a small sample 
size? 

– In the absence of data from the population of interest, are there possibly relevant data 
available from other, similar populations? 

In the field of import risk analysis in particular, and animal health risk analysis in general, it 
is common for the analyst to find that data are lacking. The analyst then has to rely on a 
combination of limited data and expert opinion, or perhaps just expert opinion alone when 
no data at all are available.  

Potential sources of data and information for qualitative and quantitative risk assessments 
include: 

– research findings published in refereed journals 
– textbooks  
– official reports such as the OIE’s web site, Bulletin and World Animal Health 
– veterinary services of trading partners 
– industry sources 
– expert opinion. 

Modelling a variable 
For each variable which is to be modelled in a risk assessment, the analyst should: 

a) document the evidence, data, assumptions and uncertainties 
b) decide whether to model it as a point estimate or to use a probability distribution 
c) select an appropriate probability distribution to represent the variable 
d) ensure the chosen distribution is biologically plausible and not simply selected because it 

provides a ‘good fit’ to the data. Careful consideration needs to be given to the 
underlying phenomena that generated the data. There are several techniques to assist in 
developing an appropriate distribution from the available information. These have been 
discussed in Chapter 6 where three approaches to developing a distribution were 
described: 
– fitting empirical data to a distribution using either parametric or non-parametric 

techniques 
– a purely subjective approach using expert opinion 
– a combined approach that incorporates empirical data and expert opinion using 

Bayes’ theorem. 

Separating uncertainty and variability 
As discussed in Chapter 7, for some variables in a quantitative risk assessment model, the 
exact value of the parameter(s) that characterise a distribution may be known, or there may 
be abundant representative data and it can be assumed that the parameter(s) derived from 
these data are the population parameters. On the other hand, for some variables, the 
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parameter(s) that characterise a distribution will be uncertain, as for example where there 
are few representative data, where there are no data, or where data are not representative. 

Since the separation of uncertainty and variability can be complex, it is important to 
investigate the potential impact of uncertainty to determine if it is reasonable to ignore it 
and model the uncertain and variable components together. Chapter 7 provided an 
approach to deciding if it is worth the effort to separate these components and develop a 
second order model. 

Ensuring a model generates plausible scenarios 
It is essential to ensure that the output from each distribution in the model, and the overall 
results for each and every iteration are biologically plausible. Calculations need to be 
checked thoroughly to ensure that unexpected results are not generated. Some 
distributions, such as the normal distribution, may need to be truncated to ensure that only 
those values within the plausible range are included. Repeated use of the recalculation key, 
for example the F9 key in Excel, as the model is being developed, is helpful in ensuring 
that each iteration is plausible. 

Verifying calculations 
It is important to ensure that the model is mathematically correct and that the inputs are 
specified appropriately. Make sure that changes in inputs result in the expected changes in 
output. If the results are counter-intuitive, then the reasons need to be ascertained. Are 
they unexpected but reasonable, or do they reflect an error? 

Sensitivity analysis 
Sensitivity analysis is used to identify the most influential variable(s) in a quantitative 
model. An awareness of which inputs are most influential in determining the output may 
be desirable for a number of reasons. Exploring the inputs and results promotes a better 
understanding and interpretation of the analysis and provides a basis for gathering further 
information and prioritising future research. Where a correlation is believed to exist 
between input variables a sensitivity analysis can also help determine if its existence could 
affect the model’s results. 

There are a number of techniques available to carry out sensitivity analysis, but the most 
common involves determining the degree of correlation between the output variables and 
their associated inputs. Correlation is a quantitative measurement of the strength of the 
relationship. The degree of correlation can be calculated by either rank order correlation or 
multivariate stepwise regression. Rank order correlation is generally preferred as no 
assumptions are made about the nature of the relationship. In contrast, multivariate 
stepwise regression assumes there is a linear relationship between the variables.  

The correlation coefficients calculated in a sensitivity analysis can be plotted on a tornado 
chart (Fig. 71). The length of the bars represents the degree of correlation between each 
input variable and the output. The higher the degree of correlation the more the input 
variable is affecting the output. A tornado chart is a useful tool for depicting the most 
influential variables(s). For example, in Figure 71 the probability of at least one chicken 
being infected with IBD is highly dependent on the probability of scraps being generated. 
Scatter plots also provide a way of visualising and investigating the nature of these 
relationships (Fig. 72). 
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Figure 71 
A tornado chart of a rank order correlation sensitivity analysis of the probability of 
at least one chicken in a backyard flock becoming infected with IBD virus as a 
result of importing boneless chicken meat27 
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Figure 72 
Two scatter plots demonstrating the effect of a model input on the model output28 

Presenting the results  
To facilitate communication of the results of a quantitative risk assessment it is important 
to: 

– restate the question that has been asked 
– explain the model’s structure clearly with the aid of appropriate diagrams, such as 

scenario trees 
– document all the evidence, data and assumptions, including their references 
 

                                                 
27 MAF Regulatory Authority. Import Risk Analysis: chicken meat and chicken meat products; Bernard Matthews 
Foods Ltd turkey meat preparations from the United Kingdom. Wellington, New Zealand, 1999 

28 Based on MAF Regulatory Authority. Import Risk Analysis: chicken meat and chicken meat products; Bernard 
Matthews Foods Ltd turkey meat preparations from the United Kingdom. Wellington, New Zealand, 1999 
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– use clearly labelled, uncluttered graphs. Histograms, cumulative frequency plots, scatter 
plots, and tornado charts are generally the most useful  

– avoid reporting results to more than one or two decimal places as reporting to several 
decimal places implies a level of precision that is usually unattainable. One should 
consider reporting the results to the nearest order of magnitude only 

– ensure the report is as focused and as uncluttered as possible 
– keep any statistics to a minimum 
– verbal communication of the results ensures a better understanding of the problem and 

the outcome of the risk assessment. 

Peer review 
As discussed in Volume 1, peer review is important in ensuring that the risk analysis is 
based on the most up to date and credible information available. For a quantitative model, 
peer review is intended also to ensure that the distributions used and the mathematical 
structure are appropriate. 

In some instances it will be possible to use a model which has already been subjected to a 
process of peer review. In such cases, only the new data inputs will need reviewing. 

______________
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Appendix 1 
Table of exact binomial confidence limits 

Confidence intervals (%) for the binomial distribution (N = 1-20) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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1 50.00 1.26 98.74 0.25 99.75 1 8.33 0.21 38.48 0.04 47.70 1 5.88 0.15 28.69 0.03 36.30 
2 100.00 15.81 100.00 7.07 100.00 2 16.67 2.09 48.41 0.90 57.30 2 11.76 1.46 36.44 0.63 44.13 

 N = 3 3 25.00 5.49 57.19 3.03 65.52 3 17.65 3.80 43.43 2.09 51.04 
0 0.00 0.00 70.76 0.00 82.90 4 33.33 9.92 65.11 6.24 72.75 4 23.53 6.81 49.90 4.26 57.32 
1 33.33 0.84 90.57 0.17 95.86 5 41.67 15.17 72.33 10.34 79.15 5 29.41 10.31 55.96 6.97 63.10 
2 66.67 9.43 99.16 4.14 99.83 6 50.00 21.09 78.91 15.22 84.78 6 35.29 14.21 61.67 10.14 68.46 
3 100.00 29.24 100.00 17.10 100.00 7 58.33 27.67 84.83 20.85 89.66 7 41.18 18.44 67.08 13.71 73.44 

 N = 4 8 66.67 34.89 90.08 27.25 93.76 8 47.06 22.98 72.19 17.64 78.07 
0 0.00 0.00 60.24 0.00 73.41 9 75.00 42.81 94.51 34.48 96.97 9 52.94 27.81 77.02 21.93 82.36 
1 25.00 0.63 80.59 0.13 88.91 10 83.33 51.59 97.91 42.70 99.10 10 58.82 32.92 81.56 26.56 86.29 
2 50.00 6.76 93.24 2.94 97.06 11 91.67 61.52 99.79 52.30 99.96 11 64.71 38.33 85.79 31.54 89.86 
3 75.00 19.41 99.37 11.09 99.87 12 100.00 73.54 100.00 64.31 100.00 12 70.59 44.04 89.69 36.90 93.03 
4 100.00 39.76 100.00 26.59 100.00  N = 13 13 76.47 50.10 93.19 42.68 95.74 

 N = 5 0 0.00 0.00 24.71 0.00 33.47 14 82.35 56.57 96.20 48.96 97.91 
0 0.00 0.00 52.18 0.00 65.34 1 7.69 0.19 36.03 0.04 44.90 15 88.24 63.56 98.54 55.87 99.37 
1 20.00 0.51 71.64 0.10 81.49 2 15.38 1.92 45.45 0.83 54.10 16 94.12 71.31 99.85 63.70 99.97 
2 40.00 5.27 85.34 2.29 91.72 3 23.08 5.04 53.81 2.78 62.06 17 100.00 80.49 100.00 73.22 100.00 
3 60.00 14.66 94.73 8.28 97.71 4 30.77 9.09 61.43 5.71 69.13  N = 18 
4 80.00 28.36 99.49 18.51 99.90 5 38.46 13.86 68.42 9.42 75.46 0 0.00 0.00 18.53 0.00 25.50 
5 100.00 47.82 100.00 34.66 100.00 6 46.15 19.22 74.87 13.83 81.13 1 5.56 0.14 27.29 0.03 34.63 

 N = 6 7 53.85 25.13 80.78 18.87 86.17 2 11.11 1.38 34.71 0.59 42.17 
0 0.00 0.00 45.93 0.00 58.65 8 61.54 31.58 86.14 24.54 90.58 3 16.67 3.58 41.42 1.97 48.84 
1 16.67 0.42 64.12 0.08 74.60 9 69.23 38.57 90.91 30.87 94.29 4 22.22 6.41 47.64 4.00 54.92 
2 33.33 4.33 77.72 1.87 85.64 10 76.92 46.19 94.96 37.94 97.22 5 27.78 9.69 53.48 6.54 60.55 
3 50.00 11.81 88.19 6.63 93.37 11 84.62 54.55 98.08 45.90 99.17 6 33.33 13.34 59.01 9.51 65.79 
4 66.67 22.28 95.67 14.36 98.13 12 92.31 63.97 99.81 55.10 99.96 7 38.89 17.30 64.25 12.84 70.68 
5 83.33 35.88 99.58 25.40 99.92 13 100.00 75.29 100.00 66.53 100.00 8 44.44 21.53 69.24 16.49 75.26 
6 100.00 54.07 100.00 41.35 100.00  N = 14 9 50.00 26.02 73.98 20.47 79.53 

 N = 7 0 0.00 0.00 23.16 0.00 31.51 10 55.56 30.76 78.47 24.74 83.51 
0 0.00 0.00 40.96 0.00 53.09 1 7.14 0.18 33.87 0.04 42.40 11 61.11 35.75 82.70 29.32 87.16 
1 14.29 0.36 57.87 0.07 68.49 2 14.29 1.78 42.81 0.76 51.23 12 66.67 40.99 86.66 34.21 90.49 
2 28.57 3.67 70.96 1.58 79.70 3 21.43 4.66 50.80 2.57 58.92 13 72.22 46.52 90.31 39.45 93.46 
3 42.86 9.90 81.59 5.53 88.23 4 28.57 8.39 58.10 5.26 65.79 14 77.78 52.36 93.59 45.08 96.00 
4 57.14 18.41 90.10 11.77 94.47 5 35.71 12.76 64.86 8.66 72.01 15 83.33 58.58 96.42 51.16 98.03 
5 71.43 29.04 96.33 20.30 98.42 6 42.86 17.66 71.14 12.67 77.66 16 88.89 65.29 98.62 57.83 99.41 
6 85.71 42.13 99.64 31.51 99.93 7 50.00 23.04 76.96 17.24 82.76 17 94.44 72.71 99.86 65.37 99.97 
7 100.00 59.04 100.00 46.91 100.00 8 57.14 28.86 82.34 22.34 87.33 18 100.00 81.47 100.00 74.50 100.00 

 N = 8 9 64.29 35.14 87.24 27.99 91.34  N = 19 
0 0.00 0.00 36.94 0.00 48.43 10 71.43 41.90 91.61 34.21 94.74 0 0.00 0.00 17.65 0.00 24.34 
1 12.50 0.32 52.65 0.06 63.15 11 78.57 49.20 95.34 41.08 97.43 1 5.26 0.13 26.03 0.03 33.11 
2 25.00 3.19 65.09 1.37 74.22 12 85.71 57.19 98.22 48.77 99.24 2 10.53 1.30 33.14 0.56 40.37 
3 37.50 8.52 75.51 4.75 83.03 13 92.86 66.13 99.82 57.60 99.96 3 15.79 3.38 39.58 1.86 46.82 
4 50.00 15.70 84.30 9.99 90.01 14 100.00 76.84 100.00 68.49 100.00 4 21.05 6.05 45.57 3.78 52.71 
5 62.50 24.49 91.48 16.97 95.25  N = 15 5 26.32 9.15 51.20 6.17 58.18 
6 75.00 34.91 96.81 25.78 98.63 0 0.00 0.00 21.80 0.00 29.76 6 31.58 12.58 56.55 8.95 63.29 
7 87.50 47.35 99.68 36.85 99.94 1 6.67 0.17 31.95 0.03 40.16 7 36.84 16.29 61.64 12.07 68.09 
8 100.00 63.06 100.00 51.57 100.00 2 13.33 1.66 40.46 0.71 48.63 8 42.11 20.25 66.50 15.49 72.60 

 N = 9 3 20.00 4.33 48.09 2.39 56.05 9 47.37 24.45 71.14 19.19 76.84 
0 0.00 0.00 33.63 0.00 44.50 4 26.67 7.79 55.10 4.88 62.73 10 52.63 28.86 75.55 23.16 80.81 
1 11.11 0.28 48.25 0.06 58.50 5 33.33 11.82 61.62 8.01 68.82 11 57.89 33.50 79.75 27.40 84.51 
2 22.22 2.81 60.01 1.21 69.26 6 40.00 16.34 67.71 11.70 74.39 12 63.16 38.36 83.71 31.91 87.93 
3 33.33 7.49 70.07 4.16 78.09 7 46.67 21.27 73.41 15.87 79.49 13 68.42 43.45 87.42 36.71 91.05 
4 44.44 13.70 78.80 8.68 85.39 8 53.33 26.59 78.73 20.51 84.13 14 73.68 48.80 90.85 41.82 93.83 
5 55.56 21.20 86.30 14.61 91.32 9 60.00 32.29 83.66 25.61 88.30 15 78.95 54.43 93.95 47.29 96.22 
6 66.67 29.93 92.51 21.91 95.84 10 66.67 38.38 88.18 31.18 91.99 16 84.21 60.42 96.62 53.18 98.14 
7 77.78 39.99 97.19 30.74 98.79 11 73.33 44.90 92.21 37.27 95.12 17 89.47 66.86 98.70 59.63 99.44 
8 88.89 51.75 99.72 41.50 99.94 12 80.00 51.91 95.67 43.95 97.61 18 94.74 73.97 99.87 66.89 99.97 
9 100.00 66.37 100.00 55.50 100.00 13 86.67 59.54 98.34 51.37 99.29 19 100.00 82.35 100.00 75.66 100.00 

 N = 10 14 93.33 68.05 99.83 59.84 99.97  N = 20 
0 0.00 0.00 30.85 0.00 41.13 15 100.00 78.20 100.00 70.24 100.00 0 0.00 0.00 16.84 0.00 23.27 
1 10.00 0.25 44.50 0.05 54.43  N = 16 1 5.00 0.13 24.87 0.03 31.71 
2 20.00 2.52 55.61 1.09 64.82 0 0.00 0.00 20.59 0.00 28.19 2 10.00 1.23 31.70 0.53 38.71 
3 30.00 6.67 65.25 3.70 73.51 1 6.25 0.16 30.23 0.03 38.14 3 15.00 3.21 37.89 1.76 44.95 
4 40.00 12.16 73.76 7.68 80.91 2 12.50 1.55 38.35 0.67 46.28 4 20.00 5.73 43.66 3.58 50.66 
5 50.00 18.71 81.29 12.83 87.17 3 18.75 4.05 45.65 2.23 53.44 5 25.00 8.66 49.10 5.83 55.98 
6 60.00 26.24 87.84 19.09 92.32 4 25.00 7.27 52.38 4.55 59.91 6 30.00 11.89 54.28 8.46 60.96 
7 70.00 34.75 93.33 26.49 96.30 5 31.25 11.02 58.66 7.45 65.85 7 35.00 15.39 59.22 11.39 65.66 
8 80.00 44.39 97.48 35.18 98.91 6 37.50 15.20 64.57 10.86 71.32 8 40.00 19.12 63.95 14.60 70.09 
9 90.00 55.50 99.75 45.57 99.95 7 43.75 19.75 70.12 14.71 76.38 9 45.00 23.06 68.47 18.06 74.28 
10 100.00 69.15 100.00 58.87 100.00 8 50.00 24.65 75.35 18.97 81.03 10 50.00 27.20 72.80 21.77 78.23 

 N = 11 9 56.25 29.88 80.25 23.62 85.29 11 55.00 31.53 76.94 25.72 81.94 
0 0.00 0.00 28.49 0.00 38.22 10 62.50 35.43 84.80 28.68 89.14 12 60.00 36.05 80.88 29.91 85.40 
1 9.09 0.23 41.28 0.05 50.86 11 68.75 41.34 88.98 34.15 92.55 13 65.00 40.78 84.61 34.34 88.61 
2 18.18 2.28 51.78 0.98 60.85 12 75.00 47.62 92.73 40.09 95.45 14 70.00 45.72 88.11 39.04 91.54 
3 27.27 6.02 60.97 3.33 69.33 13 81.25 54.35 95.95 46.56 97.77 15 75.00 50.90 91.34 44.02 94.17 
4 36.36 10.93 69.21 6.88 76.68 14 87.50 61.65 98.45 53.72 99.33 16 80.00 56.34 94.27 49.34 96.42 
5 45.45 16.75 76.62 11.45 83.07 15 93.75 69.77 99.84 61.86 99.97 17 85.00 62.11 96.79 55.05 98.24 
6 54.55 23.38 83.25 16.93 88.55 16 100.00 79.41 100.00 71.81 100.00 18 90.00 68.30 98.77 61.29 99.47 
7 63.64 30.79 89.07 23.32 93.12  19 95.00 75.13 99.87 68.29 99.97 
8 72.73 39.03 93.98 30.67 96.67 20 100.00 83.16 100.00 76.73 100.00 
9 81.82 48.22 97.72 39.15 99.02  
10 90.91 58.72 99.77 49.14 99.95 
11 100.00 71.51 100.00 61.78 100.00 
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Confidence intervals (%) for the binomial distribution (N = 21-36) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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Confidence intervals 
95% 99% 95% 99% 95% 99% 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

N = 21 N = 27 (continued) N = 32 (continued) 
0 0.00 0.00 16.11 0.00 22.30 3 11.11 2.35 29.16 1.29 35.07 6 18.75 7.21 36.44 5.09 41.95 
1 4.76 0.12 23.82 0.02 30.43 4 14.81 4.19 33.73 2.60 39.73 7 21.88 9.28 39.97 6.80 45.50 
2 9.52 1.17 30.38 0.50 37.18 5 18.52 6.30 38.08 4.23 44.11 8 25.00 11.46 43.40 8.66 48.92 
3 14.29 3.05 36.34 1.68 43.22 6 22.22 8.62 42.26 6.10 48.28 9 28.13 13.75 46.75 10.64 52.23 
4 19.05 5.45 41.91 3.39 48.76 7 25.93 11.11 46.28 8.17 52.26 10 31.25 16.12 50.01 12.73 55.43 
5 23.81 8.22 47.17 5.53 53.92 8 29.63 13.75 50.18 10.42 56.08 11 34.38 18.57 53.19 14.92 58.54 
6 28.57 11.28 52.18 8.01 58.78 9 33.33 16.52 53.96 12.83 59.75 12 37.50 21.10 56.31 17.20 61.56 
7 33.33 14.59 56.97 10.78 63.37 10 37.04 19.40 57.63 15.38 63.28 13 40.63 23.70 59.36 19.57 64.50 
8 38.10 18.11 61.56 13.81 67.72 11 40.74 22.39 61.20 18.07 66.69 14 43.75 26.36 62.34 22.03 67.35 
9 42.86 21.82 65.98 17.07 71.85 12 44.44 25.48 64.67 20.88 69.98 15 46.88 29.09 65.26 24.56 70.13 
10 47.62 25.71 70.22 20.55 75.75 13 48.15 28.67 68.05 23.81 73.14 16 50.00 31.89 68.11 27.18 72.82 

 N = 22  N = 28  N = 33 
0 0.00 0.00 15.44 0.00 21.40 0 0.00 0.00 12.34 0.00 17.24 0 0.00 0.00 10.58 0.00 14.83 
1 4.55 0.12 22.84 0.02 29.24 1 3.57 0.09 18.35 0.02 23.69 1 3.03 0.08 15.76 0.02 20.44 
2 9.09 1.12 29.16 0.48 35.77 2 7.14 0.88 23.50 0.38 29.11 2 6.06 0.74 20.23 0.32 25.18 
3 13.64 2.91 34.91 1.60 41.61 3 10.71 2.27 28.23 1.24 33.99 3 9.09 1.92 24.33 1.05 29.47 
4 18.18 5.19 40.28 3.23 46.99 4 14.29 4.03 32.67 2.51 38.53 4 12.12 3.40 28.20 2.11 33.47 
5 22.73 7.82 45.37 5.26 52.01 5 17.86 6.06 36.89 4.07 42.80 5 15.15 5.11 31.90 3.42 37.26 
6 27.27 10.73 50.22 7.61 56.74 6 21.43 8.30 40.95 5.86 46.87 6 18.18 6.98 35.46 4.92 40.87 
7 31.82 13.86 54.87 10.24 61.23 7 25.00 10.69 44.87 7.86 50.76 7 21.21 8.98 38.91 6.58 44.34 
8 36.36 17.20 59.34 13.10 65.49 8 28.57 13.22 48.67 10.02 54.49 8 24.24 11.09 42.26 8.38 47.69 
9 40.91 20.71 63.65 16.18 69.54 9 32.14 15.88 52.35 12.32 58.08 9 27.27 13.30 45.52 10.29 50.93 
10 45.45 24.39 67.79 19.46 73.40 10 35.71 18.64 55.94 14.77 61.55 10 30.30 15.59 48.71 12.31 54.08 
11 50.00 28.22 71.78 22.93 77.07 11 39.29 21.50 59.42 17.33 64.90 11 33.33 17.96 51.83 14.42 57.13 

 N = 23 12 42.86 24.46 62.82 20.02 68.14 12 36.36 20.40 54.88 16.62 60.10 
0 0.00 0.00 14.82 0.00 20.58 13 46.43 27.51 66.13 22.82 71.26 13 39.39 22.91 57.86 18.90 62.98 
1 4.35 0.11 21.95 0.02 28.14 14 50.00 30.65 69.35 25.72 74.28 14 42.42 25.48 60.78 21.27 65.79 
2 8.70 1.07 28.04 0.46 34.46  N = 29 15 45.45 28.11 63.65 23.71 68.53 
3 13.04 2.78 33.59 1.53 40.12 0 0.00 0.00 11.94 0.00 16.70 16 48.48 30.80 66.46 26.22 71.19 
4 17.39 4.95 38.78 3.08 45.34 1 3.45 0.09 17.76 0.02 22.96  N = 34 
5 21.74 7.46 43.70 5.02 50.22 2 6.90 0.85 22.77 0.36 28.23 0 0.00 0.00 10.28 0.00 14.43 
6 26.09 10.23 48.41 7.25 54.83 3 10.34 2.19 27.35 1.20 32.98 1 2.94 0.07 15.33 0.01 19.90 
7 30.43 13.21 52.92 9.74 59.21 4 13.79 3.89 31.66 2.42 37.40 2 5.88 0.72 19.68 0.31 24.52 
8 34.78 16.38 57.27 12.46 63.38 5 17.24 5.85 35.77 3.92 41.57 3 8.82 1.86 23.68 1.02 28.71 
9 39.13 19.71 61.46 15.37 67.36 6 20.69 7.99 39.72 5.65 45.54 4 11.76 3.30 27.45 2.05 32.62 
10 43.48 23.19 65.51 18.48 71.16 7 24.14 10.30 43.54 7.56 49.33 5 14.71 4.95 31.06 3.32 36.31 
11 47.83 26.82 69.41 21.76 74.79 8 27.59 12.73 47.24 9.64 52.99 6 17.65 6.76 34.53 4.77 39.85 

 N = 24 9 31.03 15.28 50.83 11.85 56.51 7 20.59 8.70 37.90 6.38 43.24 
0 0.00 0.00 14.25 0.00 19.81 10 34.48 17.94 54.33 14.20 59.91 8 23.53 10.75 41.17 8.11 46.52 
1 4.17 0.11 21.12 0.02 27.13 11 37.93 20.69 57.74 16.66 63.20 9 26.47 12.88 44.36 9.96 49.70 
2 8.33 1.03 27.00 0.44 33.24 12 41.38 23.52 61.06 19.23 66.38 10 29.41 15.10 47.48 11.91 52.78 
3 12.50 2.66 32.36 1.46 38.73 13 44.83 26.45 64.31 21.91 69.46 11 32.35 17.39 50.53 13.95 55.78 
4 16.67 4.74 37.38 2.95 43.79 14 48.28 29.45 67.47 24.69 72.43 12 35.29 19.75 53.51 16.07 58.69 
5 20.83 7.13 42.15 4.79 48.55  N = 30 13 38.24 22.17 56.44 18.28 61.53 
6 25.00 9.77 46.71 6.92 53.04 0 0.00 0.00 11.57 0.00 16.19 14 41.18 24.65 59.30 20.56 64.30 
7 29.17 12.62 51.09 9.30 57.32 1 3.33 0.08 17.22 0.02 22.28 15 44.12 27.19 62.11 22.91 67.00 
8 33.33 15.63 55.32 11.88 61.40 2 6.67 0.82 22.07 0.35 27.40 16 47.06 29.78 64.87 25.33 69.62 
9 37.50 18.80 59.41 14.65 65.30 3 10.00 2.11 26.53 1.16 32.03 17 50.00 32.43 67.57 27.82 72.18 
10 41.67 22.11 63.36 17.59 69.04 4 13.33 3.76 30.72 2.33 36.34  N = 35 
11 45.83 25.55 67.18 20.70 72.62 5 16.67 5.64 34.72 3.78 40.40 0 0.00 0.00 10.00 0.00 14.05 
12 50.00 29.12 70.88 23.96 76.04 6 20.00 7.71 38.57 5.45 44.28 1 2.86 0.07 14.92 0.01 19.38 

 N = 25 7 23.33 9.93 42.28 7.29 47.99 2 5.71 0.70 19.16 0.30 23.89 
0 0.00 0.00 13.72 0.00 19.10 8 26.67 12.28 45.89 9.29 51.56 3 8.57 1.80 23.06 0.99 27.98 
1 4.00 0.10 20.35 0.02 26.18 9 30.00 14.73 49.40 11.42 55.01 4 11.43 3.20 26.74 1.99 31.80 
2 8.00 0.98 26.03 0.42 32.10 10 33.33 17.29 52.81 13.67 58.34 5 14.29 4.81 30.26 3.22 35.42 
3 12.00 2.55 31.22 1.40 37.43 11 36.67 19.93 56.14 16.04 61.57 6 17.14 6.56 33.65 4.63 38.87 
4 16.00 4.54 36.08 2.82 42.35 12 40.00 22.66 59.40 18.50 64.70 7 20.00 8.44 36.94 6.18 42.20 
5 20.00 6.83 40.70 4.59 46.98 13 43.33 25.46 62.57 21.07 67.73 8 22.86 10.42 40.14 7.86 45.41 
6 24.00 9.36 45.13 6.63 51.36 14 46.67 28.34 65.67 23.73 70.67 9 25.71 12.49 43.26 9.65 48.52 
7 28.00 12.07 49.39 8.89 55.53 15 50.00 31.30 68.70 26.48 73.52 10 28.57 14.64 46.30 11.54 51.55 
8 32.00 14.95 53.50 11.35 59.52  N = 31 11 31.43 16.85 49.29 13.51 54.49 
9 36.00 17.97 57.48 13.99 63.35 0 0.00 0.00 11.22 0.00 15.71 12 34.29 19.13 52.21 15.56 57.35 
10 40.00 21.13 61.33 16.79 67.02 1 3.23 0.08 16.70 0.02 21.63 13 37.14 21.47 55.08 17.69 60.14 
11 44.00 24.40 65.07 19.74 70.54 2 6.45 0.79 21.42 0.34 26.62 14 40.00 23.87 57.89 19.89 62.87 
12 48.00 27.80 68.69 22.83 73.93 3 9.68 2.04 25.75 1.12 31.13 15 42.86 26.32 60.65 22.16 65.52 

 N = 26 4 12.90 3.63 29.83 2.25 35.33 16 45.71 28.83 63.35 24.50 68.11 
0 0.00 0.00 13.23 0.00 18.44 5 16.13 5.45 33.73 3.65 39.30 17 48.57 31.38 66.01 26.90 70.64 
1 3.85 0.10 19.64 0.02 25.29 6 19.35 7.45 37.47 5.26 43.08  N = 36 
2 7.69 0.95 25.13 0.41 31.04 7 22.58 9.59 41.10 7.04 46.71 0 0.00 0.00 9.74 0.00 13.69 
3 11.54 2.45 30.15 1.34 36.21 8 25.81 11.86 44.61 8.96 50.21 1 2.78 0.07 14.53 0.01 18.89 
4 15.38 4.36 34.87 2.71 41.00 9 29.03 14.22 48.04 11.02 53.58 2 5.56 0.68 18.66 0.29 23.30 
5 19.23 6.55 39.35 4.40 45.50 10 32.26 16.68 51.37 13.18 56.85 3 8.33 1.75 22.47 0.96 27.29 
6 23.08 8.97 43.65 6.35 49.77 11 35.48 19.23 54.63 15.46 60.02 4 11.11 3.11 26.06 1.93 31.02 
7 26.92 11.57 47.79 8.52 53.85 12 38.71 21.85 57.81 17.83 63.09 5 13.89 4.67 29.50 3.12 34.56 
8 30.77 14.33 51.79 10.87 57.75 13 41.94 24.55 60.92 20.29 66.08 6 16.67 6.37 32.81 4.49 37.94 
9 34.62 17.21 55.67 13.38 61.50 14 45.16 27.32 63.97 22.85 68.98 7 19.44 8.19 36.02 6.00 41.20 
10 38.46 20.23 59.43 16.05 65.10 15 48.39 30.15 66.94 25.49 71.79 8 22.22 10.12 39.15 7.63 44.35 
11 42.31 23.35 63.08 18.86 68.57  N = 32 9 25.00 12.12 42.20 9.36 47.40 
12 46.15 26.59 66.63 21.81 71.91 0 0.00 0.00 10.89 0.00 15.26 10 27.78 14.20 45.19 11.19 50.37 
13 50.00 29.93 70.07 24.89 75.11 1 3.13 0.08 16.22 0.02 21.02 11 30.56 16.35 48.11 13.10 53.25 

 N = 27 2 6.25 0.77 20.81 0.33 25.88 12 33.33 18.56 50.97 15.09 56.07 
0 0.00 0.00 12.77 0.00 17.82 3 9.38 1.98 25.02 1.08 30.28 13 36.11 20.82 53.78 17.14 58.81 
1 3.70 0.09 18.97 0.02 24.46 4 12.50 3.51 28.99 2.18 34.38 14 38.89 23.14 56.54 19.27 61.49 
2 7.41 0.91 24.29 0.39 30.04 5 15.63 5.28 32.79 3.53 38.25 15 41.67 25.51 59.24 21.46 64.11 
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Confidence intervals (%) for the binomial distribution (N = 37-47) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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N

r

Confidence intervals 
95% 99% 95% 99% 95% 99% 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 
N = 36 (continued) N = 40 (continued) N = 44 (continued) 

16 44.44 27.94 61.90 23.72 66.66 18 45.00 29.26 61.51 25.16 66.05 12 27.27 14.96 42.79 12.11 47.48 
17 47.22 30.41 64.51 26.03 69.16 19 47.50 31.51 63.87 27.29 68.32 13 29.55 16.76 45.20 13.74 49.88 
18 50.00 32.92 67.08 28.41 71.59 20 50.00 33.80 66.20 29.46 70.54 14 31.82 18.61 47.58 15.43 52.24 

 N = 37  N = 41 15 34.09 20.49 49.92 17.15 54.55 
0 0.00 0.00 9.49 0.00 13.34 0 0.00 0.00 8.60 0.00 12.12 16 36.36 22.41 52.23 18.92 56.82 
1 2.70 0.07 14.16 0.01 18.42 1 2.44 0.06 12.86 0.01 16.77 17 38.64 24.36 54.50 20.73 59.05 
2 5.41 0.66 18.19 0.28 22.73 2 4.88 0.60 16.53 0.26 20.71 18 40.91 26.34 56.75 22.59 61.24 
3 8.11 1.70 21.91 0.93 26.63 3 7.32 1.54 19.92 0.84 24.29 19 43.18 28.35 58.97 24.48 63.39 
4 10.81 3.03 25.42 1.88 30.28 4 9.76 2.72 23.13 1.69 27.65 20 45.45 30.39 61.15 26.41 65.51 
5 13.51 4.54 28.77 3.04 33.75 5 12.20 4.08 26.20 2.73 30.83 21 47.73 32.46 63.31 28.37 67.58 
6 16.22 6.19 32.01 4.36 37.06 6 14.63 5.57 29.17 3.92 33.89 22 50.00 34.56 65.44 30.38 69.62 
7 18.92 7.96 35.16 5.83 40.25 7 17.07 7.15 32.06 5.23 36.83  N = 45 
8 21.62 9.83 38.21 7.41 43.33 8 19.51 8.82 34.87 6.64 39.69 0 0.00 0.00 7.87 0.00 11.11 
9 24.32 11.77 41.20 9.09 46.33 9 21.95 10.56 37.61 8.14 42.46 1 2.22 0.06 11.77 0.01 15.38 
10 27.03 13.79 44.12 10.86 49.24 10 24.39 12.36 40.30 9.72 45.17 2 4.44 0.54 15.15 0.23 19.01 
11 29.73 15.87 46.98 12.71 52.07 11 26.83 14.22 42.94 11.37 47.81 3 6.67 1.40 18.27 0.77 22.32 
12 32.43 18.01 49.79 14.64 54.83 12 29.27 16.13 45.54 13.08 50.38 4 8.89 2.48 21.22 1.53 25.43 
13 35.14 20.21 52.54 16.63 57.53 13 31.71 18.08 48.09 14.85 52.91 5 11.11 3.71 24.05 2.48 28.38 
14 37.84 22.46 55.24 18.69 60.17 14 34.15 20.08 50.59 16.67 55.38 6 13.33 5.05 26.79 3.56 31.21 
15 40.54 24.75 57.90 20.81 62.75 15 36.59 22.12 53.06 18.55 57.80 7 15.56 6.49 29.46 4.74 33.95 
16 43.24 27.10 60.51 22.99 65.26 16 39.02 24.20 55.50 20.47 60.17 8 17.78 8.00 32.05 6.02 36.60 
17 45.95 29.49 63.08 25.22 67.73 17 41.46 26.32 57.89 22.44 62.50 9 20.00 9.58 34.60 7.37 39.18 
18 48.65 31.92 65.60 27.52 70.13 18 43.90 28.47 60.25 24.46 64.78 10 22.22 11.20 37.09 8.80 41.71 

 N = 38 19 46.34 30.66 62.58 26.52 67.02 11 24.44 12.88 39.54 10.28 44.17 
0 0.00 0.00 9.25 0.00 13.01 20 48.78 32.88 64.87 28.63 69.22 12 26.67 14.60 41.94 11.82 46.58 
1 2.63 0.07 13.81 0.01 17.98  N = 42 13 28.89 16.37 44.31 13.41 48.95 
2 5.26 0.64 17.75 0.28 22.19 0 0.00 0.00 8.41 0.00 11.85 14 31.11 18.17 46.65 15.05 51.27 
3 7.89 1.66 21.38 0.91 26.01 1 2.38 0.06 12.57 0.01 16.40 15 33.33 20.00 48.95 16.73 53.54 
4 10.53 2.94 24.80 1.83 29.58 2 4.76 0.58 16.16 0.25 20.26 16 35.56 21.87 51.22 18.46 55.78 
5 13.16 4.41 28.09 2.95 32.97 3 7.14 1.50 19.48 0.82 23.77 17 37.78 23.77 53.46 20.22 57.98 
6 15.79 6.02 31.25 4.24 36.21 4 9.52 2.66 22.62 1.65 27.05 18 40.00 25.70 55.67 22.02 60.14 
7 18.42 7.74 34.33 5.67 39.34 5 11.90 3.98 25.63 2.66 30.18 19 42.22 27.66 57.85 23.86 62.26 
8 21.05 9.55 37.32 7.20 42.36 6 14.29 5.43 28.54 3.82 33.18 20 44.44 29.64 60.00 25.74 64.35 
9 23.68 11.44 40.24 8.83 45.30 7 16.67 6.97 31.36 5.10 36.07 21 46.67 31.66 62.13 27.65 66.40 
10 26.32 13.40 43.10 10.55 48.15 8 19.05 8.60 34.12 6.47 38.87 22 48.89 33.70 64.23 29.60 68.42 
11 28.95 15.42 45.90 12.35 50.94 9 21.43 10.30 36.81 7.94 41.59  N = 46 
12 31.58 17.50 48.65 14.21 53.65 10 23.81 12.05 39.45 9.47 44.25 0 0.00 0.00 7.71 0.00 10.88 
13 34.21 19.63 51.35 16.14 56.31 11 26.19 13.86 42.04 11.08 46.84 1 2.17 0.06 11.53 0.01 15.07 
14 36.84 21.81 54.01 18.14 58.90 12 28.57 15.72 44.58 12.74 49.38 2 4.35 0.53 14.84 0.23 18.63 
15 39.47 24.04 56.61 20.19 61.44 13 30.95 17.62 47.09 14.46 51.86 3 6.52 1.37 17.90 0.75 21.88 
16 42.11 26.31 59.18 22.30 63.92 14 33.33 19.57 49.55 16.23 54.29 4 8.70 2.42 20.79 1.50 24.93 
17 44.74 28.62 61.70 24.47 66.35 15 35.71 21.55 51.97 18.06 56.68 5 10.87 3.62 23.57 2.42 27.82 
18 47.37 30.98 64.18 26.68 68.72 16 38.10 23.57 54.36 19.93 59.02 6 13.04 4.94 26.26 3.47 30.60 
19 50.00 33.38 66.62 28.95 71.05 17 40.48 25.63 56.72 21.84 61.31 7 15.22 6.34 28.87 4.63 33.29 

 N = 39 18 42.86 27.72 59.04 23.80 63.56 8 17.39 7.82 31.42 5.88 35.90 
0 0.00 0.00 9.03 0.00 12.70 19 45.24 29.85 61.33 25.80 65.77 9 19.57 9.36 33.91 7.20 38.44 
1 2.56 0.06 13.48 0.01 17.56 20 47.62 32.00 63.58 27.85 67.94 10 21.74 10.95 36.36 8.59 40.92 
2 5.13 0.63 17.32 0.27 21.67 21 50.00 34.19 65.81 29.93 70.07 11 23.91 12.59 38.77 10.04 43.34 
3 7.69 1.62 20.87 0.89 25.41  N = 43 12 26.09 14.27 41.13 11.54 45.72 
4 10.26 2.87 24.22 1.78 28.91 0 0.00 0.00 8.22 0.00 11.59 13 28.26 15.99 43.46 13.10 48.04 
5 12.82 4.30 27.43 2.87 32.22 1 2.33 0.06 12.29 0.01 16.04 14 30.43 17.74 45.75 14.69 50.33 
6 15.38 5.86 30.53 4.13 35.40 2 4.65 0.57 15.81 0.24 19.82 15 32.61 19.53 48.02 16.33 52.57 
7 17.95 7.54 33.53 5.51 38.47 3 6.98 1.46 19.06 0.80 23.27 16 34.78 21.35 50.25 18.01 54.77 
8 20.51 9.30 36.46 7.00 41.43 4 9.30 2.59 22.14 1.61 26.49 17 36.96 23.21 52.45 19.73 56.94 
9 23.08 11.13 39.33 8.59 44.31 5 11.63 3.89 25.08 2.60 29.55 18 39.13 25.09 54.63 21.49 59.07 
10 25.64 13.04 42.13 10.26 47.12 6 13.95 5.30 27.93 3.73 32.49 19 41.30 27.00 56.77 23.28 61.16 
11 28.21 15.00 44.87 12.00 49.85 7 16.28 6.81 30.70 4.97 35.33 20 43.48 28.93 58.89 25.11 63.23 
12 30.77 17.02 47.57 13.81 52.52 8 18.60 8.39 33.40 6.32 38.08 21 45.65 30.90 60.99 26.97 65.25 
13 33.33 19.09 50.22 15.69 55.13 9 20.93 10.04 36.04 7.74 40.76 22 47.83 32.89 63.05 28.86 67.25 
14 35.90 21.20 52.82 17.62 57.68 10 23.26 11.76 38.63 9.24 43.37 23 50.00 34.90 65.10 30.79 69.21 
15 38.46 23.36 55.38 19.61 60.18 11 25.58 13.52 41.17 10.80 45.92  N = 47 
16 41.03 25.57 57.90 21.66 62.62 12 27.91 15.33 43.67 12.42 48.41 0 0.00 0.00 7.55 0.00 10.66 
17 43.59 27.81 60.38 23.75 65.02 13 30.23 17.18 46.13 14.09 50.85 1 2.13 0.05 11.29 0.01 14.77 
18 46.15 30.09 62.82 25.90 67.36 14 32.56 19.08 48.54 15.82 53.25 2 4.26 0.52 14.54 0.22 18.27 
19 48.72 32.42 65.22 28.10 69.66 15 34.88 21.01 50.93 17.59 55.59 3 6.38 1.34 17.54 0.73 21.45 

 N = 40 16 37.21 22.98 53.27 19.41 57.90 4 8.51 2.37 20.38 1.47 24.44 
0 0.00 0.00 8.81 0.00 12.41 17 39.53 24.98 55.59 21.27 60.16 5 10.64 3.55 23.10 2.37 27.29 
1 2.50 0.06 13.16 0.01 17.15 18 41.86 27.01 57.87 23.18 62.38 6 12.77 4.83 25.74 3.40 30.02 
2 5.00 0.61 16.92 0.26 21.18 19 44.19 29.08 60.12 25.12 64.56 7 14.89 6.20 28.31 4.53 32.66 
3 7.50 1.57 20.39 0.86 24.84 20 46.51 31.18 62.35 27.11 66.70 8 17.02 7.65 30.81 5.75 35.23 
4 10.00 2.79 23.66 1.73 28.26 21 48.84 33.31 64.54 29.13 68.80 9 19.15 9.15 33.26 7.04 37.73 
5 12.50 4.19 26.80 2.80 31.51  N = 44 10 21.28 10.70 35.66 8.40 40.16 
6 15.00 5.71 29.84 4.02 34.63 0 0.00 0.00 8.04 0.00 11.34 11 23.40 12.30 38.03 9.81 42.55 
7 17.50 7.34 32.78 5.37 37.63 1 2.27 0.06 12.02 0.01 15.70 12 25.53 13.94 40.35 11.28 44.88 
8 20.00 9.05 35.65 6.82 40.54 2 4.55 0.56 15.47 0.24 19.41 13 27.66 15.62 42.64 12.79 47.17 
9 22.50 10.84 38.45 8.36 43.37 3 6.82 1.43 18.66 0.78 22.79 14 29.79 17.34 44.89 14.35 49.42 
10 25.00 12.69 41.20 9.98 46.12 4 9.09 2.53 21.67 1.57 25.95 15 31.91 19.09 47.12 15.95 51.63 
11 27.50 14.60 43.89 11.68 48.81 5 11.36 3.79 24.56 2.54 28.95 16 34.04 20.86 49.31 17.59 53.80 
12 30.00 16.56 46.53 13.44 51.43 6 13.64 5.17 27.35 3.64 31.84 17 36.17 22.67 51.48 19.27 55.94 
13 32.50 18.57 49.13 15.26 54.00 7 15.91 6.64 30.07 4.85 34.63 18 38.30 24.51 53.62 20.98 58.04 
14 35.00 20.63 51.68 17.13 56.51 8 18.18 8.19 32.71 6.16 37.33 19 40.43 26.37 55.73 22.73 60.11 
15 37.50 22.73 54.20 19.06 58.97 9 20.45 9.80 35.30 7.55 39.96 20 42.55 28.26 57.82 24.51 62.14 
16 40.00 24.87 56.67 21.05 61.38 10 22.73 11.47 37.84 9.01 42.52 21 44.68 30.17 59.88 26.32 64.14 
17 42.50 27.04 59.11 23.08 63.74 11 25.00 13.19 40.34 10.53 45.03 22 46.81 32.11 61.92 28.16 66.11 
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Confidence intervals (%) for the binomial distribution (N = 48-56) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 
N = 47 (continued)  N = 51 (continued)  N = 54 (continued) 

23 48.94 34.08 63.94 30.04 68.05 3 5.88 1.23 16.24 0.67 19.90 4 7.41 2.06 17.89 1.27 21.53 
 N = 48 4 7.84 2.18 18.88 1.35 22.69 5 9.26 3.08 20.30 2.05 24.06 

0 0.00 0.00 7.40 0.00 10.45 5 9.80 3.26 21.41 2.18 25.35 6 11.11 4.19 22.63 2.94 26.49 
1 2.08 0.05 11.07 0.01 14.48 6 11.76 4.44 23.87 3.12 27.90 7 12.96 5.37 24.90 3.92 28.84 
2 4.17 0.51 14.25 0.22 17.91 7 13.73 5.70 26.26 4.16 30.37 8 14.81 6.62 27.12 4.97 31.13 
3 6.25 1.31 17.20 0.72 21.05 8 15.69 7.02 28.59 5.28 32.77 9 16.67 7.92 29.29 6.08 33.36 
4 8.33 2.32 19.98 1.44 23.98 9 17.65 8.40 30.87 6.46 35.11 10 18.52 9.25 31.43 7.25 35.55 
5 10.42 3.47 22.66 2.32 26.78 10 19.61 9.82 33.12 7.70 37.39 11 20.37 10.63 33.53 8.46 37.69 
6 12.50 4.73 25.25 3.32 29.46 11 21.57 11.29 35.32 8.99 39.63 12 22.22 12.04 35.60 9.72 39.78 
7 14.58 6.07 27.76 4.43 32.06 12 23.53 12.79 37.49 10.33 41.82 13 24.07 13.49 37.64 11.02 41.85 
8 16.67 7.48 30.22 5.62 34.58 13 25.49 14.33 39.63 11.72 43.98 14 25.93 14.96 39.65 12.35 43.87 
9 18.75 8.95 32.63 6.89 37.03 14 27.45 15.89 41.74 13.14 46.10 15 27.78 16.46 41.64 13.72 45.87 
10 20.83 10.47 34.99 8.21 39.43 15 29.41 17.49 43.83 14.59 48.18 16 29.63 17.98 43.61 15.12 47.83 
11 22.92 12.03 37.31 9.59 41.78 16 31.37 19.11 45.89 16.09 50.23 17 31.48 19.52 45.55 16.55 49.77 
12 25.00 13.64 39.60 11.03 44.08 17 33.33 20.76 47.92 17.61 52.25 18 33.33 21.09 47.47 18.00 51.68 
13 27.08 15.28 41.85 12.51 46.33 18 35.29 22.43 49.93 19.17 54.23 19 35.19 22.68 49.38 19.48 53.56 
14 29.17 16.95 44.06 14.03 48.55 19 37.25 24.13 51.92 20.75 56.19 20 37.04 24.29 51.26 20.99 55.42 
15 31.25 18.66 46.25 15.59 50.72 20 39.22 25.84 53.89 22.37 58.13 21 38.89 25.92 53.12 22.53 57.26 
16 33.33 20.40 48.41 17.19 52.86 21 41.18 27.58 55.83 24.01 60.03 22 40.74 27.57 54.97 24.09 59.07 
17 35.42 22.16 50.54 18.83 54.97 22 43.14 29.35 57.75 25.68 61.91 23 42.59 29.23 56.79 25.67 60.85 
18 37.50 23.95 52.65 20.50 57.04 23 45.10 31.13 59.66 27.37 63.76 24 44.44 30.92 58.60 27.27 62.62 
19 39.58 25.77 54.73 22.20 59.08 24 47.06 32.93 61.54 29.10 65.58 25 46.30 32.62 60.39 28.90 64.36 
20 41.67 27.61 56.79 23.93 61.09 25 49.02 34.75 63.40 30.84 67.38 26 48.15 34.34 62.16 30.55 66.08 
21 43.75 29.48 58.82 25.70 63.07  N = 52 27 50.00 36.08 63.92 32.23 67.77 
22 45.83 31.37 60.83 27.50 65.01 0 0.00 0.00 6.85 0.00 9.69  N = 55 
23 47.92 33.29 62.81 29.33 66.93 1 1.92 0.05 10.26 0.01 13.44 0 0.00 0.00 6.49 0.00 9.18 
24 50.00 35.23 64.77 31.18 68.82 2 3.85 0.47 13.21 0.20 16.63 1 1.82 0.05 9.72 0.01 12.75 

 N = 49 3 5.77 1.21 15.95 0.66 19.55 2 3.64 0.44 12.53 0.19 15.79 
0 0.00 0.00 7.25 0.00 10.25 4 7.69 2.14 18.54 1.32 22.29 3 5.45 1.14 15.12 0.62 18.56 
1 2.04 0.05 10.85 0.01 14.21 5 9.62 3.20 21.03 2.13 24.90 4 7.27 2.02 17.59 1.25 21.17 
2 4.08 0.50 13.98 0.21 17.58 6 11.54 4.35 23.44 3.06 27.41 5 9.09 3.02 19.95 2.01 23.66 
3 6.12 1.28 16.87 0.70 20.65 7 13.46 5.59 25.79 4.08 29.84 6 10.91 4.11 22.25 2.89 26.05 
4 8.16 2.27 19.60 1.41 23.53 8 15.38 6.88 28.08 5.17 32.20 7 12.73 5.27 24.48 3.85 28.37 
5 10.20 3.40 22.23 2.27 26.28 9 17.31 8.23 30.33 6.33 34.51 8 14.55 6.50 26.66 4.88 30.62 
6 12.24 4.63 24.77 3.25 28.92 10 19.23 9.63 32.53 7.54 36.76 9 16.36 7.77 28.80 5.97 32.82 
7 14.29 5.94 27.24 4.34 31.47 11 21.15 11.06 34.70 8.81 38.96 10 18.18 9.08 30.90 7.11 34.97 
8 16.33 7.32 29.66 5.50 33.95 12 23.08 12.53 36.84 10.12 41.12 11 20.00 10.43 32.97 8.30 37.08 
9 18.37 8.76 32.02 6.74 36.37 13 25.00 14.03 38.95 11.47 43.24 12 21.82 11.81 35.01 9.53 39.15 
10 20.41 10.24 34.34 8.03 38.73 14 26.92 15.57 41.02 12.86 45.33 13 23.64 13.23 37.02 10.81 41.18 
11 22.45 11.77 36.62 9.39 41.04 15 28.85 17.13 43.08 14.29 47.38 14 25.45 14.67 39.00 12.11 43.18 
12 24.49 13.34 38.87 10.79 43.30 16 30.77 18.72 45.10 15.75 49.40 15 27.27 16.14 40.96 13.45 45.15 
13 26.53 14.95 41.08 12.23 45.52 17 32.69 20.33 47.11 17.24 51.39 16 29.09 17.63 42.90 14.82 47.08 
14 28.57 16.58 43.26 13.72 47.70 18 34.62 21.97 49.09 18.76 53.36 17 30.91 19.14 44.81 16.22 49.00 
15 30.61 18.25 45.42 15.24 49.85 19 36.54 23.62 51.04 20.31 55.29 18 32.73 20.68 46.71 17.64 50.88 
16 32.65 19.95 47.54 16.81 51.96 20 38.46 25.30 52.98 21.89 57.20 19 34.55 22.24 48.58 19.10 52.74 
17 34.69 21.67 49.64 18.40 54.03 21 40.38 27.01 54.90 23.49 59.08 20 36.36 23.81 50.44 20.57 54.57 
18 36.73 23.42 51.71 20.03 56.07 22 42.31 28.73 56.80 25.12 60.93 21 38.18 25.41 52.27 22.07 56.39 
19 38.78 25.20 53.76 21.69 58.09 23 44.23 30.47 58.67 26.78 62.76 22 40.00 27.02 54.09 23.60 58.17 
20 40.82 27.00 55.79 23.39 60.07 24 46.15 32.23 60.53 28.46 64.57 23 41.82 28.65 55.89 25.15 59.94 
21 42.86 28.82 57.79 25.11 62.02 25 48.08 34.01 62.37 30.17 66.35 24 43.64 30.30 57.68 26.72 61.68 
22 44.90 30.67 59.77 26.86 63.95 26 50.00 35.81 64.19 31.90 68.10 25 45.45 31.97 59.45 28.31 63.40 
23 46.94 32.53 61.73 28.64 65.84  N = 53 26 47.27 33.65 61.20 29.92 65.10 
24 48.98 34.42 63.66 30.45 67.71 0 0.00 0.00 6.72 0.00 9.51 27 49.09 35.35 62.93 31.56 66.78 

 N = 50 1 1.89 0.05 10.07 0.01 13.20  N = 56 
0 0.00 0.00 7.11 0.00 10.05 2 3.77 0.46 12.98 0.20 16.34 0 0.00 0.00 6.38 0.00 9.03 
1 2.00 0.05 10.65 0.01 13.94 3 5.66 1.18 15.66 0.65 19.21 1 1.79 0.05 9.55 0.01 12.53 
2 4.00 0.49 13.71 0.21 17.25 4 7.55 2.09 18.21 1.30 21.90 2 3.57 0.44 12.31 0.19 15.52 
3 6.00 1.25 16.55 0.69 20.27 5 9.43 3.13 20.66 2.09 24.47 3 5.36 1.12 14.87 0.61 18.25 
4 8.00 2.22 19.23 1.38 23.11 6 11.32 4.27 23.03 3.00 26.94 4 7.14 1.98 17.29 1.23 20.82 
5 10.00 3.33 21.81 2.22 25.80 7 13.21 5.48 25.34 4.00 29.33 5 8.93 2.96 19.62 1.98 23.27 
6 12.00 4.53 24.31 3.19 28.40 8 15.09 6.75 27.59 5.07 31.66 6 10.71 4.03 21.88 2.83 25.63 
7 14.00 5.82 26.74 4.25 30.91 9 16.98 8.07 29.80 6.20 33.93 7 12.50 5.18 24.07 3.77 27.91 
8 16.00 7.17 29.11 5.39 33.35 10 18.87 9.44 31.97 7.39 36.14 8 14.29 6.38 26.22 4.79 30.13 
9 18.00 8.58 31.44 6.60 35.73 11 20.75 10.84 34.11 8.63 38.31 9 16.07 7.62 28.33 5.86 32.30 
10 20.00 10.03 33.72 7.86 38.05 12 22.64 12.28 36.21 9.92 40.44 10 17.86 8.91 30.40 6.98 34.42 
11 22.00 11.53 35.96 9.19 40.32 13 24.53 13.76 38.28 11.24 42.53 11 19.64 10.23 32.43 8.14 36.49 
12 24.00 13.06 38.17 10.56 42.55 14 26.42 15.26 40.33 12.60 44.59 12 21.43 11.59 34.44 9.35 38.53 
13 26.00 14.63 40.34 11.97 44.74 15 28.30 16.79 42.35 14.00 46.61 13 23.21 12.98 36.42 10.60 40.53 
14 28.00 16.23 42.49 13.42 46.89 16 30.19 18.34 44.34 15.43 48.61 14 25.00 14.39 38.37 11.88 42.50 
15 30.00 17.86 44.61 14.91 49.00 17 32.08 19.92 46.32 16.89 50.57 15 26.79 15.83 40.30 13.19 44.45 
16 32.00 19.52 46.70 16.44 51.08 18 33.96 21.52 48.27 18.37 52.51 16 28.57 17.30 42.21 14.53 46.36 
17 34.00 21.21 48.77 18.00 53.12 19 35.85 23.14 50.20 19.89 54.41 17 30.36 18.78 44.10 15.90 48.24 
18 36.00 22.92 50.81 19.59 55.14 20 37.74 24.79 52.11 21.43 56.30 18 32.14 20.29 45.96 17.30 50.10 
19 38.00 24.65 52.83 21.21 57.13 21 39.62 26.45 54.00 23.00 58.15 19 33.93 21.81 47.81 18.72 51.94 
20 40.00 26.41 54.82 22.87 59.08 22 41.51 28.14 55.87 24.59 59.99 20 35.71 23.36 49.64 20.17 53.75 
21 42.00 28.19 56.79 24.55 61.01 23 43.40 29.84 57.72 26.21 61.79 21 37.50 24.92 51.45 21.64 55.54 
22 44.00 29.99 58.75 26.26 62.91 24 45.28 31.56 59.55 27.86 63.58 22 39.29 26.50 53.25 23.13 57.31 
23 46.00 31.81 60.68 27.99 64.78 25 47.17 33.30 61.36 29.52 65.34 23 41.07 28.10 55.02 24.65 59.05 
24 48.00 33.66 62.58 29.76 66.63 26 49.06 35.06 63.16 31.21 67.07 24 42.86 29.71 56.78 26.18 60.77 
25 50.00 35.53 64.47 31.55 68.45  N = 54 25 44.64 31.34 58.53 27.74 62.48 

 N = 51 0 0.00 0.00 6.60 0.00 9.35 26 46.43 32.99 60.26 29.32 64.16 
0 0.00 0.00 6.98 0.00 9.87 1 1.85 0.05 9.89 0.01 12.97 27 48.21 34.66 61.97 30.92 65.82 
1 1.96 0.05 10.45 0.01 13.68 2 3.70 0.45 12.75 0.19 16.06 28 50.00 36.34 63.66 32.54 67.46 
2 3.92 0.48 13.46 0.20 16.94 3 5.56 1.16 15.39 0.64 18.88  
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Confidence intervals (%) for the binomial distribution (N = 57-64) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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N = 57  N = 59 (continued) N = 62 (continued) 
0 0.00 0.00 6.27 0.00 8.88 23 38.98 26.55 52.56 23.26 56.53 12 19.35 10.42 31.37 8.40 35.20 
1 1.75 0.04 9.39 0.01 12.32 24 40.68 28.07 54.25 24.70 58.19 13 20.97 11.66 33.18 9.51 37.04 
2 3.51 0.43 12.11 0.18 15.27 25 42.37 29.61 55.93 26.17 59.84 14 22.58 12.93 34.97 10.66 38.86 
3 5.26 1.10 14.62 0.60 17.96 26 44.07 31.16 57.60 27.65 61.47 15 24.19 14.22 36.74 11.83 40.65 
4 7.02 1.95 17.00 1.20 20.48 27 45.76 32.72 59.25 29.15 63.08 16 25.81 15.53 38.50 13.03 42.42 
5 8.77 2.91 19.30 1.94 22.90 28 47.46 34.30 60.88 30.67 64.67 17 27.42 16.85 40.23 14.25 44.16 
6 10.53 3.96 21.52 2.78 25.22 29 49.15 35.89 62.50 32.20 66.24 18 29.03 18.20 41.95 15.49 45.89 
7 12.28 5.08 23.68 3.71 27.47  N = 60 19 30.65 19.56 43.65 16.76 47.59 
8 14.04 6.26 25.79 4.70 29.65 0 0.00 0.00 5.96 0.00 8.45 20 32.26 20.94 45.34 18.05 49.27 
9 15.79 7.48 27.87 5.75 31.79 1 1.67 0.04 8.94 0.01 11.74 21 33.87 22.33 47.01 19.35 50.93 
10 17.54 8.75 29.91 6.85 33.88 2 3.33 0.41 11.53 0.17 14.55 22 35.48 23.74 48.66 20.68 52.58 
11 19.30 10.05 31.91 7.99 35.92 3 5.00 1.04 13.92 0.57 17.12 23 37.10 25.16 50.31 22.02 54.21 
12 21.05 11.38 33.89 9.18 37.93 4 6.67 1.85 16.20 1.14 19.53 24 38.71 26.60 51.93 23.38 55.81 
13 22.81 12.74 35.84 10.40 39.91 5 8.33 2.76 18.39 1.84 21.84 25 40.32 28.05 53.55 24.76 57.41 
14 24.56 14.13 37.76 11.66 41.85 6 10.00 3.76 20.51 2.64 24.06 26 41.94 29.51 55.15 26.16 58.98 
15 26.32 15.54 39.66 12.94 43.77 7 11.67 4.82 22.57 3.51 26.21 27 43.55 30.99 56.74 27.57 60.54 
16 28.07 16.97 41.54 14.26 45.65 8 13.33 5.94 24.59 4.45 28.31 28 45.16 32.48 58.32 29.00 62.08 
17 29.82 18.43 43.40 15.60 47.51 9 15.00 7.10 26.57 5.45 30.35 29 46.77 33.98 59.88 30.45 63.61 
18 31.58 19.90 45.24 16.97 49.35 10 16.67 8.29 28.52 6.49 32.35 30 48.39 35.50 61.44 31.91 65.12 
19 33.33 21.40 47.06 18.36 51.16 11 18.33 9.52 30.44 7.57 34.31 31 50.00 37.02 62.98 33.39 66.61 
20 35.09 22.91 48.87 19.78 52.95 12 20.00 10.78 32.33 8.69 36.24  N = 63 
21 36.84 24.45 50.66 21.22 54.72 13 21.67 12.07 34.20 9.85 38.14 0 0.00 0.00 5.69 0.00 8.07 
22 38.60 26.00 52.43 22.68 56.46 14 23.33 13.38 36.04 11.04 40.01 1 1.59 0.04 8.53 0.01 11.21 
23 40.35 27.56 54.18 24.17 58.19 15 25.00 14.72 37.86 12.25 41.84 2 3.17 0.39 11.00 0.17 13.90 
24 42.11 29.14 55.92 25.67 59.89 16 26.67 16.07 39.66 13.49 43.66 3 4.76 0.99 13.29 0.54 16.36 
25 43.86 30.74 57.64 27.20 61.57 17 28.33 17.45 41.44 14.76 45.45 4 6.35 1.76 15.47 1.09 18.67 
26 45.61 32.36 59.34 28.74 63.24 18 30.00 18.85 43.21 16.05 47.21 5 7.94 2.63 17.56 1.75 20.88 
27 47.37 33.98 61.03 30.31 64.88 19 31.67 20.26 44.96 17.37 48.96 6 9.52 3.58 19.59 2.51 23.00 
28 49.12 35.63 62.71 31.89 66.51 20 33.33 21.69 46.69 18.70 50.68 7 11.11 4.59 21.56 3.34 25.07 

 N = 58 21 35.00 23.13 48.40 20.06 52.39 8 12.70 5.65 23.50 4.23 27.08 
0 0.00 0.00 6.16 0.00 8.73 22 36.67 24.59 50.10 21.44 54.07 9 14.29 6.75 25.39 5.18 29.04 
1 1.72 0.04 9.24 0.01 12.12 23 38.33 26.07 51.79 22.83 55.73 10 15.87 7.88 27.26 6.17 30.96 
2 3.45 0.42 11.91 0.18 15.02 24 40.00 27.56 53.46 24.25 57.38 11 17.46 9.05 29.10 7.19 32.84 
3 5.17 1.08 14.38 0.59 17.67 25 41.67 29.07 55.12 25.68 59.01 12 19.05 10.25 30.91 8.26 34.70 
4 6.90 1.91 16.73 1.18 20.16 26 43.33 30.59 56.76 27.13 60.62 13 20.63 11.47 32.70 9.35 36.52 
5 8.62 2.86 18.98 1.91 22.53 27 45.00 32.12 58.39 28.60 62.21 14 22.22 12.72 34.46 10.48 38.31 
6 10.34 3.89 21.17 2.73 24.82 28 46.67 33.67 60.00 30.09 63.78 15 23.81 13.98 36.21 11.63 40.08 
7 12.07 4.99 23.30 3.64 27.03 29 48.33 35.23 61.61 31.60 65.34 16 25.40 15.27 37.94 12.81 41.83 
8 13.79 6.15 25.38 4.61 29.19 30 50.00 36.81 63.19 33.12 66.88 17 26.98 16.57 39.65 14.01 43.55 
9 15.52 7.35 27.42 5.64 31.29  N = 61 18 28.57 17.89 41.35 15.23 45.25 
10 17.24 8.59 29.43 6.72 33.35 0 0.00 0.00 5.87 0.00 8.32 19 30.16 19.23 43.02 16.47 46.93 
11 18.97 9.87 31.41 7.85 35.37 1 1.64 0.04 8.80 0.01 11.56 20 31.75 20.58 44.69 17.74 48.59 
12 20.69 11.17 33.35 9.01 37.35 2 3.28 0.40 11.35 0.17 14.33 21 33.33 21.95 46.34 19.02 50.24 
13 22.41 12.51 35.27 10.21 39.30 3 4.92 1.03 13.71 0.56 16.86 22 34.92 23.34 47.97 20.32 51.86 
14 24.14 13.87 37.17 11.44 41.22 4 6.56 1.82 15.95 1.12 19.24 23 36.51 24.73 49.60 21.64 53.47 
15 25.86 15.26 39.04 12.70 43.11 5 8.20 2.72 18.10 1.81 21.51 24 38.10 26.15 51.20 22.97 55.06 
16 27.59 16.66 40.90 13.99 44.97 6 9.84 3.70 20.19 2.59 23.70 25 39.68 27.57 52.80 24.33 56.64 
17 29.31 18.09 42.73 15.31 46.80 7 11.48 4.74 22.22 3.45 25.82 26 41.27 29.01 54.38 25.70 58.19 
18 31.03 19.54 44.54 16.65 48.62 8 13.11 5.84 24.22 4.38 27.88 27 42.86 30.46 55.95 27.08 59.74 
19 32.76 21.01 46.34 18.02 50.41 9 14.75 6.98 26.17 5.35 29.90 28 44.44 31.92 57.51 28.49 61.26 
20 34.48 22.49 48.12 19.41 52.17 10 16.39 8.15 28.09 6.38 31.87 29 46.03 33.39 59.06 29.90 62.77 
21 36.21 23.99 49.88 20.82 53.92 11 18.03 9.36 29.98 7.44 33.81 30 47.62 34.88 60.59 31.34 64.27 
22 37.93 25.51 51.63 22.25 55.64 12 19.67 10.60 31.84 8.54 35.71 31 49.21 36.38 62.11 32.79 65.75 
23 39.66 27.05 53.36 23.70 57.35 13 21.31 11.86 33.68 9.68 37.58  N = 64 
24 41.38 28.60 55.07 25.18 59.03 14 22.95 13.15 35.50 10.84 39.42 0 0.00 0.00 5.60 0.00 7.95 
25 43.10 30.16 56.77 26.67 60.70 15 24.59 14.46 37.29 12.04 41.24 1 1.56 0.04 8.40 0.01 11.04 
26 44.83 31.74 58.46 28.18 62.34 16 26.23 15.80 39.07 13.26 43.03 2 3.13 0.38 10.84 0.16 13.69 
27 46.55 33.34 60.13 29.72 63.97 17 27.87 17.15 40.83 14.50 44.80 3 4.69 0.98 13.09 0.53 16.12 
28 48.28 34.95 61.78 31.27 65.57 18 29.51 18.52 42.57 15.77 46.54 4 6.25 1.73 15.24 1.07 18.40 
29 50.00 36.58 63.42 32.84 67.16 19 31.15 19.90 44.29 17.06 48.26 5 7.81 2.59 17.30 1.72 20.57 

 N = 59 20 32.79 21.31 46.00 18.37 49.97 6 9.38 3.52 19.30 2.47 22.67 
0 0.00 0.00 6.06 0.00 8.59 21 34.43 22.73 47.69 19.70 51.65 7 10.94 4.51 21.25 3.29 24.71 
1 1.69 0.04 9.09 0.01 11.93 22 36.07 24.16 49.37 21.05 53.31 8 12.50 5.55 23.15 4.16 26.69 
2 3.39 0.41 11.71 0.18 14.78 23 37.70 25.61 51.04 22.42 54.96 9 14.06 6.64 25.02 5.09 28.62 
3 5.08 1.06 14.15 0.58 17.39 24 39.34 27.07 52.69 23.81 56.59 10 15.63 7.76 26.86 6.06 30.52 
4 6.78 1.88 16.46 1.16 19.84 25 40.98 28.55 54.32 25.21 58.20 11 17.19 8.90 28.68 7.08 32.38 
5 8.47 2.81 18.68 1.87 22.18 26 42.62 30.04 55.94 26.64 59.79 12 18.75 10.08 30.46 8.12 34.21 
6 10.17 3.82 20.83 2.69 24.43 27 44.26 31.55 57.55 28.08 61.36 13 20.31 11.28 32.23 9.20 36.01 
7 11.86 4.91 22.93 3.58 26.62 28 45.90 33.06 59.15 29.54 62.92 14 21.88 12.51 33.97 10.30 37.78 
8 13.56 6.04 24.98 4.53 28.74 29 47.54 34.60 60.73 31.01 64.46 15 23.44 13.75 35.69 11.44 39.53 
9 15.25 7.22 26.99 5.54 30.82 30 49.18 36.14 62.30 32.50 65.99 16 25.00 15.02 37.40 12.59 41.25 
10 16.95 8.44 28.97 6.60 32.84  N = 62 17 26.56 16.30 39.09 13.77 42.95 
11 18.64 9.69 30.91 7.71 34.83 0 0.00 0.00 5.78 0.00 8.19 18 28.13 17.60 40.76 14.97 44.63 
12 20.34 10.98 32.83 8.85 36.79 1 1.61 0.04 8.66 0.01 11.38 19 29.69 18.91 42.42 16.19 46.29 
13 22.03 12.29 34.73 10.03 38.71 2 3.23 0.39 11.17 0.17 14.11 20 31.25 20.24 44.06 17.43 47.94 
14 23.73 13.62 36.59 11.24 40.60 3 4.84 1.01 13.50 0.55 16.60 21 32.81 21.59 45.69 18.69 49.56 
15 25.42 14.98 38.44 12.47 42.47 4 6.45 1.79 15.70 1.11 18.95 22 34.38 22.95 47.30 19.97 51.17 
16 27.12 16.36 40.27 13.74 44.30 5 8.06 2.67 17.83 1.78 21.19 23 35.94 24.32 48.90 21.27 52.76 
17 28.81 17.76 42.08 15.03 46.12 6 9.68 3.63 19.88 2.55 23.35 24 37.50 25.70 50.49 22.58 54.33 
18 30.51 19.19 43.87 16.35 47.91 7 11.29 4.66 21.89 3.40 25.44 25 39.06 27.10 52.07 23.91 55.89 
19 32.20 20.62 45.64 17.69 49.67 8 12.90 5.74 23.85 4.30 27.47 26 40.63 28.51 53.63 25.25 57.43 
20 33.90 22.08 47.39 19.05 51.42 9 14.52 6.86 25.78 5.26 29.46 27 42.19 29.94 55.18 26.61 58.95 
21 35.59 23.55 49.13 20.43 53.14 10 16.13 8.02 27.67 6.27 31.41 28 43.75 31.37 56.72 27.99 60.46 
22 37.29 25.04 50.85 21.84 54.85 11 17.74 9.20 29.53 7.32 33.32 29 45.31 32.82 58.25 29.38 61.96 
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Confidence intervals (%) for the binomial distribution (N = 65-71) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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N = 64 (continued)  N = 67 (continued)  N = 69 (continued) 
30 46.88 34.28 59.77 30.79 63.44 11 16.42 8.49 27.48 6.74 31.07 24 34.78 23.71 47.21 20.80 50.93 
31 48.44 35.75 61.27 32.21 64.90 12 17.91 9.61 29.20 7.74 32.82 25 36.23 24.99 48.69 22.01 52.40 
32 50.00 37.23 62.77 33.64 66.36 13 19.40 10.76 30.89 8.76 34.56 26 37.68 26.29 50.17 23.24 53.86 

 N = 65 14 20.90 11.92 32.57 9.82 36.26 27 39.13 27.60 51.63 24.49 55.31 
0 0.00 0.00 5.52 0.00 7.83 15 22.39 13.11 34.22 10.89 37.95 28 40.58 28.91 53.08 25.75 56.75 
1 1.54 0.04 8.28 0.01 10.88 16 23.88 14.31 35.86 11.99 39.61 29 42.03 30.24 54.52 27.02 58.17 
2 3.08 0.37 10.68 0.16 13.49 17 25.37 15.53 37.49 13.11 41.25 30 43.48 31.58 55.96 28.30 59.58 
3 4.62 0.96 12.90 0.53 15.88 18 26.87 16.76 39.10 14.25 42.87 31 44.93 32.92 57.38 29.60 60.97 
4 6.15 1.70 15.01 1.05 18.13 19 28.36 18.01 40.69 15.41 44.47 32 46.38 34.28 58.80 30.91 62.36 
5 7.69 2.54 17.05 1.70 20.28 20 29.85 19.28 42.27 16.59 46.06 33 47.83 35.65 60.20 32.23 63.73 
6 9.23 3.46 19.02 2.43 22.35 21 31.34 20.56 43.84 17.79 47.63 34 49.28 37.02 61.59 33.57 65.09 
7 10.77 4.44 20.94 3.23 24.36 22 32.84 21.85 45.40 19.00 49.18  N = 70 
8 12.31 5.47 22.82 4.10 26.31 23 34.33 23.15 46.94 20.23 50.72 0 0.00 0.00 5.13 0.00 7.29 
9 13.85 6.53 24.66 5.01 28.22 24 35.82 24.47 48.47 21.47 52.24 1 1.43 0.04 7.70 0.01 10.14 
10 15.38 7.63 26.48 5.97 30.09 25 37.31 25.80 49.99 22.73 53.74 2 2.86 0.35 9.94 0.15 12.58 
11 16.92 8.76 28.27 6.96 31.93 26 38.81 27.14 51.50 24.01 55.24 3 4.29 0.89 12.02 0.49 14.81 
12 18.46 9.92 30.03 7.99 33.73 27 40.30 28.49 53.00 25.30 56.72 4 5.71 1.58 13.99 0.98 16.92 
13 20.00 11.10 31.77 9.05 35.51 28 41.79 29.85 54.48 26.60 58.18 5 7.14 2.36 15.89 1.57 18.93 
14 21.54 12.31 33.49 10.14 37.26 29 43.28 31.22 55.96 27.92 59.63 6 8.57 3.21 17.73 2.25 20.87 
15 23.08 13.53 35.19 11.25 38.99 30 44.78 32.60 57.42 29.25 61.07 7 10.00 4.12 19.52 3.00 22.75 
16 24.62 14.77 36.87 12.38 40.69 31 46.27 34.00 58.88 30.59 62.49 8 11.43 5.07 21.28 3.80 24.58 
17 26.15 16.03 38.54 13.54 42.37 32 47.76 35.40 60.33 31.95 63.90 9 12.86 6.05 23.01 4.64 26.37 
18 27.69 17.31 40.19 14.72 44.03 33 49.25 36.82 61.76 33.32 65.30 10 14.29 7.07 24.71 5.52 28.13 
19 29.23 18.60 41.83 15.93 45.67  N = 68 11 15.71 8.11 26.38 6.44 29.85 
20 30.77 19.91 43.45 17.14 47.29 0 0.00 0.00 5.28 0.00 7.50 12 17.14 9.18 28.03 7.39 31.55 
21 32.31 21.23 45.05 18.38 48.90 1 1.47 0.04 7.92 0.01 10.42 13 18.57 10.28 29.66 8.37 33.22 
22 33.85 22.57 46.65 19.64 50.49 2 2.94 0.36 10.22 0.15 12.93 14 20.00 11.39 31.27 9.37 34.86 
23 35.38 23.92 48.23 20.91 52.06 3 4.41 0.92 12.36 0.50 15.22 15 21.43 12.52 32.87 10.40 36.49 
24 36.92 25.28 49.80 22.20 53.61 4 5.88 1.63 14.38 1.01 17.38 16 22.86 13.67 34.45 11.45 38.09 
25 38.46 26.65 51.36 23.50 55.15 5 7.35 2.43 16.33 1.62 19.45 17 24.29 14.83 36.01 12.51 39.67 
26 40.00 28.04 52.90 24.82 56.68 6 8.82 3.31 18.22 2.32 21.44 18 25.71 16.01 37.56 13.60 41.24 
27 41.54 29.44 54.44 26.16 58.19 7 10.29 4.24 20.07 3.09 23.37 19 27.14 17.20 39.10 14.71 42.79 
28 43.08 30.85 55.96 27.51 59.68 8 11.76 5.22 21.87 3.91 25.25 20 28.57 18.40 40.62 15.83 44.32 
29 44.62 32.27 57.47 28.88 61.16 9 13.24 6.23 23.64 4.78 27.08 21 30.00 19.62 42.13 16.97 45.84 
30 46.15 33.70 58.97 30.26 62.63 10 14.71 7.28 25.39 5.69 28.88 22 31.43 20.85 43.63 18.12 47.34 
31 47.69 35.15 60.46 31.65 64.08 11 16.18 8.36 27.10 6.64 30.65 23 32.86 22.09 45.12 19.29 48.82 
32 49.23 36.60 61.93 33.06 65.52 12 17.65 9.47 28.80 7.62 32.39 24 34.29 23.35 46.60 20.47 50.30 

 N = 66 13 19.12 10.59 30.47 8.63 34.10 25 35.71 24.61 48.07 21.67 51.76 
0 0.00 0.00 5.44 0.00 7.71 14 20.59 11.74 32.12 9.66 35.78 26 37.14 25.89 49.52 22.88 53.20 
1 1.52 0.04 8.16 0.01 10.73 15 22.06 12.90 33.76 10.72 37.45 27 38.57 27.17 50.97 24.11 54.63 
2 3.03 0.37 10.52 0.16 13.30 16 23.53 14.09 35.38 11.80 39.09 28 40.00 28.47 52.41 25.34 56.05 
3 4.55 0.95 12.71 0.52 15.66 17 25.00 15.29 36.98 12.91 40.71 29 41.43 29.77 53.83 26.59 57.46 
4 6.06 1.68 14.80 1.04 17.88 18 26.47 16.50 38.57 14.03 42.31 30 42.86 31.09 55.25 27.85 58.86 
5 7.58 2.51 16.80 1.67 19.99 19 27.94 17.73 40.15 15.17 43.90 31 44.29 32.41 56.66 29.13 60.24 
6 9.09 3.41 18.74 2.39 22.04 20 29.41 18.98 41.71 16.33 45.46 32 45.71 33.74 58.06 30.42 61.61 
7 10.61 4.37 20.64 3.18 24.02 21 30.88 20.24 43.26 17.51 47.02 33 47.14 35.09 59.45 31.72 62.97 
8 12.12 5.38 22.49 4.03 25.95 22 32.35 21.51 44.79 18.70 48.55 34 48.57 36.44 60.83 33.03 64.32 
9 13.64 6.43 24.31 4.93 27.83 23 33.82 22.79 46.32 19.91 50.07 35 50.00 37.80 62.20 34.35 65.65 
10 15.15 7.51 26.10 5.87 29.68 24 35.29 24.08 47.83 21.13 51.58  N = 71 
11 16.67 8.62 27.87 6.85 31.49 25 36.76 25.39 49.33 22.37 53.07 0 0.00 0.00 5.06 0.00 7.19 
12 18.18 9.76 29.61 7.86 33.27 26 38.24 26.71 50.82 23.62 54.54 1 1.41 0.04 7.60 0.01 10.00 
13 19.70 10.93 31.32 8.90 35.03 27 39.71 28.03 52.30 24.89 56.00 2 2.82 0.34 9.81 0.15 12.41 
14 21.21 12.11 33.02 9.97 36.75 28 41.18 29.37 53.77 26.17 57.45 3 4.23 0.88 11.86 0.48 14.62 
15 22.73 13.31 34.70 11.07 38.46 29 42.65 30.72 55.23 27.46 58.89 4 5.63 1.56 13.80 0.96 16.69 
16 24.24 14.54 36.36 12.18 40.14 30 44.12 32.08 56.68 28.77 60.31 5 7.04 2.33 15.67 1.55 18.68 
17 25.76 15.78 38.01 13.32 41.80 31 45.59 33.45 58.12 30.09 61.72 6 8.45 3.16 17.49 2.22 20.59 
18 27.27 17.03 39.64 14.48 43.44 32 47.06 34.83 59.55 31.42 63.12 7 9.86 4.06 19.26 2.95 22.45 
19 28.79 18.30 41.25 15.67 45.06 33 48.53 36.22 60.97 32.77 64.50 8 11.27 4.99 21.00 3.74 24.26 
20 30.30 19.59 42.85 16.86 46.67 34 50.00 37.62 62.38 34.12 65.88 9 12.68 5.96 22.70 4.57 26.03 
21 31.82 20.89 44.44 18.08 48.25  N = 69 10 14.08 6.97 24.38 5.44 27.77 
22 33.33 22.20 46.01 19.31 49.82 0 0.00 0.00 5.21 0.00 7.39 11 15.49 8.00 26.03 6.35 29.47 
23 34.85 23.53 47.58 20.56 51.38 1 1.45 0.04 7.81 0.01 10.28 12 16.90 9.05 27.66 7.28 31.14 
24 36.36 24.87 49.13 21.83 52.92 2 2.90 0.35 10.08 0.15 12.75 13 18.31 10.13 29.27 8.24 32.79 
25 37.88 26.22 50.66 23.11 54.44 3 4.35 0.91 12.18 0.50 15.02 14 19.72 11.22 30.87 9.23 34.42 
26 39.39 27.58 52.19 24.41 55.95 4 5.80 1.60 14.18 0.99 17.15 15 21.13 12.33 32.44 10.24 36.02 
27 40.91 28.95 53.71 25.72 57.44 5 7.25 2.39 16.11 1.60 19.18 16 22.54 13.46 34.00 11.27 37.61 
28 42.42 30.34 55.21 27.05 58.92 6 8.70 3.26 17.97 2.29 21.15 17 23.94 14.61 35.54 12.33 39.17 
29 43.94 31.74 56.70 28.39 60.39 7 10.14 4.18 19.79 3.04 23.05 18 25.35 15.77 37.08 13.40 40.72 
30 45.45 33.14 58.19 29.74 61.84 8 11.59 5.14 21.57 3.85 24.91 19 26.76 16.94 38.59 14.48 42.25 
31 46.97 34.56 59.66 31.11 63.28 9 13.04 6.14 23.32 4.71 26.72 20 28.17 18.13 40.10 15.59 43.77 
32 48.48 35.99 61.12 32.49 64.70 10 14.49 7.17 25.04 5.61 28.50 21 29.58 19.33 41.59 16.71 45.27 
33 50.00 37.43 62.57 33.89 66.11 11 15.94 8.24 26.74 6.54 30.25 22 30.99 20.54 43.08 17.84 46.75 

 N = 67 12 17.39 9.32 28.41 7.50 31.96 23 32.39 21.76 44.55 18.99 48.22 
0 0.00 0.00 5.36 0.00 7.60 13 18.84 10.43 30.06 8.50 33.65 24 33.80 23.00 46.01 20.16 49.68 
1 1.49 0.04 8.04 0.01 10.57 14 20.29 11.56 31.69 9.51 35.32 25 35.21 24.24 47.46 21.34 51.12 
2 2.99 0.36 10.37 0.16 13.11 15 21.74 12.71 33.31 10.56 36.96 26 36.62 25.50 48.90 22.53 52.56 
3 4.48 0.93 12.53 0.51 15.44 16 23.19 13.87 34.91 11.62 38.58 27 38.03 26.76 50.33 23.73 53.97 
4 5.97 1.65 14.59 1.02 17.63 17 24.64 15.05 36.49 12.71 40.19 28 39.44 28.03 51.75 24.95 55.38 
5 7.46 2.47 16.56 1.65 19.72 18 26.09 16.25 38.06 13.81 41.77 29 40.85 29.32 53.16 26.18 56.77 
6 8.96 3.36 18.48 2.36 21.73 19 27.54 17.46 39.62 14.93 43.34 30 42.25 30.61 54.56 27.42 58.15 
7 10.45 4.30 20.35 3.14 23.69 20 28.99 18.69 41.16 16.07 44.89 31 43.66 31.91 55.95 28.67 59.52 
8 11.94 5.30 22.18 3.97 25.59 21 30.43 19.92 42.69 17.23 46.42 32 45.07 33.23 57.34 29.94 60.88 
9 13.43 6.33 23.97 4.86 27.45 22 31.88 21.17 44.21 18.40 47.94 33 46.48 34.55 58.71 31.22 62.23 
10 14.93 7.40 25.74 5.78 29.28 23 33.33 22.44 45.71 19.59 49.44 34 47.89 35.88 60.08 32.50 63.56 

 



Appendices 

Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 111 

Confidence intervals (%) for the binomial distribution (N = 72-78) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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95% 99% 95% 99% 95% 99% 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

N = 71 (continued)  N = 74 (continued)  N = 76 (continued) 
35 49.30 37.22 61.44 33.80 64.88 6 8.11 3.03 16.82 2.13 19.81 12 15.79 8.43 25.96 6.78 29.27 

 N = 72 7 9.46 3.89 18.52 2.83 21.60 13 17.11 9.43 27.47 7.68 30.83 
0 0.00 0.00 4.99 0.00 7.09 8 10.81 4.78 20.20 3.58 23.35 14 18.42 10.45 28.97 8.59 32.36 
1 1.39 0.04 7.50 0.01 9.87 9 12.16 5.71 21.84 4.38 25.06 15 19.74 11.49 30.46 9.53 33.88 
2 2.78 0.34 9.68 0.14 12.25 10 13.51 6.68 23.45 5.21 26.73 16 21.05 12.54 31.92 10.49 35.37 
3 4.17 0.87 11.70 0.47 14.42 11 14.86 7.66 25.04 6.08 28.37 17 22.37 13.60 33.38 11.47 36.85 
4 5.56 1.53 13.62 0.95 16.48 12 16.22 8.67 26.61 6.97 29.99 18 23.68 14.68 34.82 12.46 38.32 
5 6.94 2.29 15.47 1.53 18.44 13 17.57 9.70 28.17 7.89 31.58 19 25.00 15.77 36.26 13.47 39.77 
6 8.33 3.12 17.26 2.19 20.33 14 18.92 10.75 29.70 8.84 33.15 20 26.32 16.87 37.68 14.49 41.20 
7 9.72 4.00 19.01 2.91 22.16 15 20.27 11.81 31.22 9.80 34.70 21 27.63 17.99 39.09 15.53 42.62 
8 11.11 4.92 20.72 3.69 23.95 16 21.62 12.89 32.72 10.79 36.24 22 28.95 19.11 40.49 16.58 44.03 
9 12.50 5.88 22.41 4.51 25.70 17 22.97 13.99 34.21 11.80 37.75 23 30.26 20.25 41.87 17.65 45.43 
10 13.89 6.87 24.06 5.36 27.41 18 24.32 15.10 35.69 12.82 39.25 24 31.58 21.39 43.25 18.73 46.81 
11 15.28 7.88 25.69 6.26 29.09 19 25.68 16.22 37.16 13.86 40.73 25 32.89 22.54 44.63 19.82 48.18 
12 16.67 8.92 27.30 7.18 30.75 20 27.03 17.35 38.61 14.91 42.19 26 34.21 23.71 45.99 20.92 49.54 
13 18.06 9.98 28.89 8.12 32.38 21 28.38 18.50 40.05 15.98 43.64 27 35.53 24.88 47.34 22.03 50.89 
14 19.44 11.06 30.47 9.10 33.99 22 29.73 19.66 41.48 17.07 45.08 28 36.84 26.06 48.69 23.16 52.22 
15 20.83 12.16 32.02 10.09 35.57 23 31.08 20.83 42.90 18.16 46.51 29 38.16 27.25 50.02 24.29 53.55 
16 22.22 13.27 33.56 11.11 37.14 24 32.43 22.00 44.32 19.27 47.92 30 39.47 28.44 51.35 25.44 54.86 
17 23.61 14.40 35.09 12.14 38.69 25 33.78 23.19 45.72 20.40 49.32 31 40.79 29.65 52.67 26.59 56.17 
18 25.00 15.54 36.60 13.20 40.22 26 35.14 24.39 47.11 21.53 50.70 32 42.11 30.86 53.98 27.76 57.46 
19 26.39 16.70 38.10 14.27 41.73 27 36.49 25.60 48.49 22.68 52.08 33 43.42 32.08 55.29 28.94 58.75 
20 27.78 17.86 39.59 15.36 43.23 28 37.84 26.81 49.87 23.84 53.44 34 44.74 33.31 56.59 30.13 60.03 
21 29.17 19.05 41.07 16.46 44.71 29 39.19 28.04 51.23 25.01 54.79 35 46.05 34.55 57.87 31.32 61.29 
22 30.56 20.24 42.53 17.58 46.18 30 40.54 29.27 52.59 26.19 56.14 36 47.37 35.79 59.16 32.53 62.55 
23 31.94 21.44 43.99 18.71 47.64 31 41.89 30.51 53.94 27.39 57.47 37 48.68 37.04 60.43 33.75 63.79 
24 33.33 22.66 45.43 19.86 49.08 32 43.24 31.77 55.28 28.59 58.79 38 50.00 38.30 61.70 34.97 65.03 
25 34.72 23.88 46.86 21.01 50.51 33 44.59 33.02 56.61 29.81 60.10  N = 77 
26 36.11 25.12 48.29 22.19 51.92 34 45.95 34.29 57.93 31.03 61.39 0 0.00 0.00 4.68 0.00 6.65 
27 37.50 26.36 49.70 23.37 53.33 35 47.30 35.57 59.25 32.27 62.68 1 1.30 0.03 7.02 0.01 9.26 
28 38.89 27.62 51.11 24.57 54.72 36 48.65 36.85 60.56 33.52 63.96 2 2.60 0.32 9.07 0.14 11.49 
29 40.28 28.88 52.50 25.78 56.10 37 50.00 38.14 61.86 34.77 65.23 3 3.90 0.81 10.97 0.44 13.54 
30 41.67 30.15 53.89 27.00 57.47  N = 75 4 5.19 1.43 12.77 0.89 15.47 
31 43.06 31.43 55.27 28.23 58.82 0 0.00 0.00 4.80 0.00 6.82 5 6.49 2.14 14.51 1.43 17.31 
32 44.44 32.72 56.64 29.48 60.17 1 1.33 0.03 7.21 0.01 9.49 6 7.79 2.91 16.19 2.04 19.09 
33 45.83 34.02 58.00 30.73 61.50 2 2.67 0.32 9.30 0.14 11.78 7 9.09 3.73 17.84 2.72 20.82 
34 47.22 35.33 59.35 32.00 62.82 3 4.00 0.83 11.25 0.46 13.88 8 10.39 4.59 19.45 3.44 22.50 
35 48.61 36.65 60.69 33.28 64.13 4 5.33 1.47 13.10 0.91 15.85 9 11.69 5.49 21.03 4.20 24.15 
36 50.00 37.98 62.02 34.57 65.43 5 6.67 2.20 14.88 1.47 17.74 10 12.99 6.41 22.59 5.00 25.77 

 N = 73 6 8.00 2.99 16.60 2.10 19.57 11 14.29 7.35 24.13 5.83 27.36 
0 0.00 0.00 4.93 0.00 7.00 7 9.33 3.84 18.29 2.79 21.34 12 15.58 8.32 25.64 6.69 28.92 
1 1.37 0.03 7.40 0.01 9.74 8 10.67 4.72 19.94 3.53 23.06 13 16.88 9.31 27.14 7.57 30.46 
2 2.74 0.33 9.55 0.14 12.09 9 12.00 5.64 21.56 4.32 24.75 14 18.18 10.31 28.62 8.48 31.98 
3 4.11 0.86 11.54 0.47 14.24 10 13.33 6.58 23.16 5.14 26.40 15 19.48 11.33 30.09 9.40 33.48 
4 5.48 1.51 13.44 0.94 16.26 11 14.67 7.56 24.73 5.99 28.03 16 20.78 12.37 31.54 10.35 34.96 
5 6.85 2.26 15.26 1.51 18.20 12 16.00 8.55 26.28 6.88 29.63 17 22.08 13.42 32.98 11.31 36.42 
6 8.22 3.08 17.04 2.16 20.07 13 17.33 9.57 27.81 7.78 31.20 18 23.38 14.48 34.41 12.29 37.87 
7 9.59 3.94 18.76 2.87 21.88 14 18.67 10.60 29.33 8.71 32.75 19 24.68 15.56 35.82 13.28 39.31 
8 10.96 4.85 20.46 3.63 23.65 15 20.00 11.65 30.83 9.67 34.29 20 25.97 16.64 37.23 14.29 40.72 
9 12.33 5.80 22.12 4.44 25.37 16 21.33 12.71 32.32 10.64 35.80 21 27.27 17.74 38.62 15.32 42.13 
10 13.70 6.77 23.75 5.29 27.07 17 22.67 13.79 33.79 11.63 37.30 22 28.57 18.85 40.00 16.35 43.52 
11 15.07 7.77 25.36 6.17 28.73 18 24.00 14.89 35.25 12.64 38.78 23 29.87 19.97 41.38 17.40 44.90 
12 16.44 8.79 26.95 7.07 30.37 19 25.33 15.99 36.70 13.66 40.24 24 31.17 21.09 42.74 18.46 46.27 
13 17.81 9.84 28.53 8.01 31.98 20 26.67 17.11 38.14 14.70 41.69 25 32.47 22.23 44.10 19.54 47.63 
14 19.18 10.90 30.08 8.97 33.57 21 28.00 18.24 39.56 15.75 43.13 26 33.77 23.38 45.45 20.62 48.97 
15 20.55 11.98 31.62 9.95 35.13 22 29.33 19.38 40.98 16.82 44.55 27 35.06 24.53 46.78 21.72 50.31 
16 21.92 13.08 33.14 10.95 36.68 23 30.67 20.53 42.38 17.90 45.96 28 36.36 25.70 48.12 22.83 51.63 
17 23.29 14.19 34.65 11.97 38.21 24 32.00 21.69 43.78 19.00 47.36 29 37.66 26.87 49.44 23.95 52.95 
18 24.66 15.32 36.14 13.01 39.73 25 33.33 22.86 45.17 20.10 48.74 30 38.96 28.05 50.75 25.08 54.25 
19 26.03 16.45 37.62 14.06 41.22 26 34.67 24.04 46.54 21.22 50.11 31 40.26 29.23 52.06 26.21 55.54 
20 27.40 17.61 39.09 15.13 42.71 27 36.00 25.23 47.91 22.35 51.48 32 41.56 30.43 53.36 27.36 56.82 
21 28.77 18.77 40.55 16.22 44.17 28 37.33 26.43 49.27 23.49 52.83 33 42.86 31.63 54.65 28.52 58.10 
22 30.14 19.94 42.00 17.32 45.63 29 38.67 27.64 50.62 24.65 54.16 34 44.16 32.84 55.93 29.69 59.36 
23 31.51 21.13 43.44 18.43 47.06 30 40.00 28.85 51.96 25.81 55.49 35 45.45 34.06 57.21 30.87 60.62 
24 32.88 22.33 44.87 19.56 48.49 31 41.33 30.08 53.30 26.99 56.81 36 46.75 35.29 58.48 32.06 61.86 
25 34.25 23.53 46.28 20.70 49.91 32 42.67 31.31 54.62 28.17 58.12 37 48.05 36.52 59.74 33.26 63.10 
26 35.62 24.75 47.69 21.86 51.31 33 44.00 32.55 55.94 29.37 59.42 38 49.35 37.76 61.00 34.46 64.32 
27 36.99 25.97 49.09 23.02 52.70 34 45.33 33.79 57.25 30.57 60.70  N = 78 
28 38.36 27.21 50.48 24.20 54.07 35 46.67 35.05 58.55 31.79 61.98 0 0.00 0.00 4.62 0.00 6.57 
29 39.73 28.45 51.86 25.39 55.44 36 48.00 36.31 59.85 33.02 63.25 1 1.28 0.03 6.94 0.01 9.14 
30 41.10 29.71 53.23 26.59 56.79 37 49.33 37.58 61.14 34.25 64.50 2 2.56 0.31 8.96 0.13 11.35 
31 42.47 30.97 54.59 27.80 58.14  N = 76 3 3.85 0.80 10.83 0.44 13.37 
32 43.84 32.24 55.95 29.03 59.47 0 0.00 0.00 4.74 0.00 6.73 4 5.13 1.41 12.61 0.87 15.28 
33 45.21 33.52 57.29 30.26 60.79 1 1.32 0.03 7.11 0.01 9.37 5 6.41 2.11 14.33 1.41 17.10 
34 46.58 34.80 58.63 31.51 62.10 2 2.63 0.32 9.18 0.14 11.63 6 7.69 2.88 15.99 2.02 18.86 
35 47.95 36.10 59.96 32.77 63.40 3 3.95 0.82 11.11 0.45 13.71 7 8.97 3.68 17.62 2.68 20.57 
36 49.32 37.40 61.28 34.03 64.69 4 5.26 1.45 12.93 0.90 15.66 8 10.26 4.53 19.21 3.39 22.24 

 N = 74 5 6.58 2.17 14.69 1.45 17.52 9 11.54 5.41 20.78 4.15 23.87 
0 0.00 0.00 4.86 0.00 6.91 6 7.89 2.95 16.40 2.07 19.33 10 12.82 6.32 22.32 4.94 25.46 
1 1.35 0.03 7.30 0.01 9.62 7 9.21 3.78 18.06 2.75 21.07 11 14.10 7.26 23.83 5.76 27.03 
2 2.70 0.33 9.42 0.14 11.93 8 10.53 4.66 19.69 3.49 22.78 12 15.38 8.21 25.33 6.60 28.58 
3 4.05 0.84 11.39 0.46 14.06 9 11.84 5.56 21.29 4.26 24.45 13 16.67 9.18 26.81 7.47 30.10 
4 5.41 1.49 13.27 0.92 16.06 10 13.16 6.49 22.87 5.07 26.08 14 17.95 10.17 28.28 8.36 31.60 
5 6.76 2.23 15.07 1.49 17.97 11 14.47 7.45 24.42 5.91 27.69 15 19.23 11.18 29.73 9.28 33.09 
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Confidence intervals (%) for the binomial distribution (N = 79-84) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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N = 78 (continued)  N = 80 (continued)  N = 82 (continued) 
16 20.51 12.20 31.16 10.21 34.55 18 22.50 13.91 33.21 11.80 36.59 18 21.95 13.56 32.46 11.50 35.78 
17 21.79 13.24 32.59 11.16 36.00 19 23.75 14.95 34.58 12.75 37.98 19 23.17 14.56 33.80 12.42 37.14 
18 23.08 14.29 34.00 12.12 37.43 20 25.00 15.99 35.94 13.72 39.35 20 24.39 15.58 35.12 13.37 38.49 
19 24.36 15.35 35.40 13.10 38.85 21 26.25 17.04 37.29 14.70 40.72 21 25.61 16.60 36.44 14.32 39.82 
20 25.64 16.42 36.79 14.10 40.26 22 27.50 18.10 38.62 15.70 42.07 22 26.83 17.64 37.76 15.29 41.15 
21 26.92 17.50 38.16 15.11 41.65 23 28.75 19.18 39.95 16.70 43.41 23 28.05 18.68 39.06 16.27 42.46 
22 28.21 18.59 39.53 16.13 43.03 24 30.00 20.26 41.28 17.72 44.73 24 29.27 19.74 40.35 17.26 43.76 
23 29.49 19.70 40.89 17.16 44.39 25 31.25 21.35 42.59 18.75 46.05 25 30.49 20.80 41.64 18.26 45.05 
24 30.77 20.81 42.24 18.21 45.75 26 32.50 22.45 43.89 19.79 47.36 26 31.71 21.87 42.92 19.27 46.33 
25 32.05 21.93 43.58 19.27 47.09 27 33.75 23.55 45.19 20.84 48.65 27 32.93 22.94 44.19 20.29 47.61 
26 33.33 23.06 44.92 20.34 48.42 28 35.00 24.67 46.48 21.90 49.94 28 34.15 24.03 45.45 21.32 48.87 
27 34.62 24.20 46.24 21.42 49.74 29 36.25 25.79 47.76 22.97 51.21 29 35.37 25.12 46.70 22.36 50.12 
28 35.90 25.34 47.56 22.51 51.06 30 37.50 26.92 49.04 24.05 52.48 30 36.59 26.22 47.95 23.41 51.36 
29 37.18 26.50 48.87 23.61 52.36 31 38.75 28.06 50.30 25.14 53.74 31 37.80 27.32 49.19 24.47 52.60 
30 38.46 27.66 50.17 24.72 53.65 32 40.00 29.20 51.56 26.24 54.99 32 39.02 28.44 50.43 25.54 53.82 
31 39.74 28.83 51.46 25.85 54.93 33 41.25 30.35 52.82 27.35 56.22 33 40.24 29.56 51.66 26.61 55.04 
32 41.03 30.01 52.75 26.98 56.20 34 42.50 31.51 54.06 28.46 57.45 34 41.46 30.68 52.88 27.70 56.25 
33 42.31 31.19 54.02 28.12 57.46 35 43.75 32.68 55.30 29.59 58.68 35 42.68 31.82 54.09 28.79 57.45 
34 43.59 32.39 55.30 29.27 58.71 36 45.00 33.85 56.53 30.72 59.89 36 43.90 32.96 55.30 29.89 58.64 
35 44.87 33.59 56.56 30.43 59.96 37 46.25 35.03 57.76 31.87 61.09 37 45.12 34.10 56.51 31.00 59.82 
36 46.15 34.79 57.82 31.60 61.19 38 47.50 36.21 58.98 33.02 62.29 38 46.34 35.25 57.70 32.12 61.00 
37 47.44 36.01 59.07 32.78 62.41 39 48.75 37.41 60.19 34.18 63.47 39 47.56 36.41 58.89 33.25 62.16 
38 48.72 37.23 60.31 33.97 63.63 40 50.00 38.60 61.40 35.35 64.65 40 48.78 37.58 60.08 34.38 63.32 
39 50.00 38.46 61.54 35.16 64.84  N = 81 41 50.00 38.75 61.25 35.53 64.47 

 N = 79 0 0.00 0.00 4.45 0.00 6.33  N = 83 
0 0.00 0.00 4.56 0.00 6.49 1 1.23 0.03 6.69 0.01 8.82 0 0.00 0.00 4.35 0.00 6.18 
1 1.27 0.03 6.85 0.01 9.03 2 2.47 0.30 8.64 0.13 10.95 1 1.20 0.03 6.53 0.01 8.61 
2 2.53 0.31 8.85 0.13 11.21 3 3.70 0.77 10.44 0.42 12.90 2 2.41 0.29 8.43 0.13 10.70 
3 3.80 0.79 10.70 0.43 13.21 4 4.94 1.36 12.16 0.84 14.74 3 3.61 0.75 10.20 0.41 12.61 
4 5.06 1.40 12.46 0.86 15.10 5 6.17 2.03 13.82 1.36 16.50 4 4.82 1.33 11.88 0.82 14.41 
5 6.33 2.09 14.16 1.39 16.90 6 7.41 2.77 15.43 1.94 18.21 5 6.02 1.98 13.50 1.32 16.13 
6 7.59 2.84 15.80 1.99 18.64 7 8.64 3.55 17.00 2.58 19.86 6 7.23 2.70 15.07 1.89 17.79 
7 8.86 3.64 17.41 2.65 20.33 8 9.88 4.36 18.54 3.26 21.47 7 8.43 3.46 16.61 2.52 19.41 
8 10.13 4.47 18.98 3.35 21.97 9 11.11 5.21 20.05 3.99 23.04 8 9.64 4.25 18.11 3.18 20.98 
9 11.39 5.34 20.53 4.09 23.59 10 12.35 6.08 21.53 4.75 24.59 9 10.84 5.08 19.59 3.89 22.53 
10 12.66 6.24 22.05 4.87 25.17 11 13.58 6.98 23.00 5.53 26.11 10 12.05 5.93 21.04 4.63 24.04 
11 13.92 7.16 23.55 5.68 26.72 12 14.81 7.90 24.45 6.35 27.60 11 13.25 6.81 22.48 5.40 25.53 
12 15.19 8.10 25.03 6.51 28.25 13 16.05 8.83 25.88 7.18 29.08 12 14.46 7.70 23.89 6.19 26.99 
13 16.46 9.06 26.49 7.37 29.75 14 17.28 9.78 27.30 8.04 30.53 13 15.66 8.61 25.29 7.00 28.43 
14 17.72 10.04 27.94 8.25 31.24 15 18.52 10.75 28.70 8.92 31.97 14 16.87 9.54 26.68 7.84 29.86 
15 18.99 11.03 29.38 9.15 32.71 16 19.75 11.73 30.09 9.81 33.39 15 18.07 10.48 28.05 8.69 31.26 
16 20.25 12.04 30.80 10.07 34.16 17 20.99 12.73 31.46 10.72 34.79 16 19.28 11.44 29.41 9.56 32.65 
17 21.52 13.06 32.20 11.01 35.59 18 22.22 13.73 32.83 11.65 36.18 17 20.48 12.41 30.76 10.45 34.03 
18 22.78 14.10 33.60 11.96 37.01 19 23.46 14.75 34.18 12.59 37.55 18 21.69 13.39 32.09 11.35 35.39 
19 24.05 15.14 34.98 12.93 38.41 20 24.69 15.78 35.53 13.54 38.92 19 22.89 14.38 33.42 12.27 36.74 
20 25.32 16.20 36.36 13.91 39.80 21 25.93 16.82 36.86 14.51 40.27 20 24.10 15.38 34.73 13.20 38.07 
21 26.58 17.27 37.72 14.90 41.18 22 27.16 17.87 38.19 15.49 41.60 21 25.30 16.39 36.04 14.14 39.39 
22 27.85 18.35 39.07 15.91 42.54 23 28.40 18.93 39.50 16.48 42.93 22 26.51 17.42 37.34 15.09 40.70 
23 29.11 19.43 40.42 16.93 43.89 24 29.63 19.99 40.81 17.49 44.24 23 27.71 18.45 38.62 16.06 42.00 
24 30.38 20.53 41.75 17.96 45.23 25 30.86 21.07 42.11 18.50 45.55 24 28.92 19.48 39.91 17.03 43.29 
25 31.65 21.63 43.08 19.00 46.56 26 32.10 22.15 43.40 19.52 46.84 25 30.12 20.53 41.18 18.02 44.57 
26 32.91 22.75 44.40 20.06 47.88 27 33.33 23.24 44.68 20.56 48.12 26 31.33 21.59 42.44 19.02 45.84 
27 34.18 23.87 45.71 21.12 49.19 28 34.57 24.34 45.96 21.61 49.40 27 32.53 22.65 43.70 20.03 47.10 
28 35.44 25.00 47.01 22.20 50.49 29 35.80 25.45 47.23 22.66 50.66 28 33.73 23.72 44.95 21.04 48.35 
29 36.71 26.14 48.31 23.29 51.78 30 37.04 26.56 48.49 23.73 51.92 29 34.94 24.80 46.19 22.07 49.59 
30 37.97 27.28 49.59 24.38 53.06 31 38.27 27.69 49.74 24.80 53.16 30 36.14 25.88 47.43 23.10 50.82 
31 39.24 28.44 50.87 25.49 54.33 32 39.51 28.81 50.99 25.88 54.40 31 37.35 26.97 48.66 24.15 52.04 
32 40.51 29.60 52.15 26.60 55.59 33 40.74 29.95 52.23 26.97 55.63 32 38.55 28.07 49.88 25.20 53.26 
33 41.77 30.77 53.41 27.73 56.84 34 41.98 31.09 53.46 28.08 56.84 33 39.76 29.17 51.10 26.26 54.46 
34 43.04 31.94 54.67 28.86 58.08 35 43.21 32.24 54.69 29.18 58.05 34 40.96 30.28 52.31 27.33 55.66 
35 44.30 33.12 55.92 30.00 59.31 36 44.44 33.40 55.91 30.30 59.26 35 42.17 31.40 53.51 28.41 56.85 
36 45.57 34.31 57.17 31.16 60.53 37 45.68 34.56 57.13 31.43 60.45 36 43.37 32.53 54.71 29.50 58.03 
37 46.84 35.51 58.40 32.32 61.75 38 46.91 35.73 58.33 32.56 61.64 37 44.58 33.66 55.90 30.59 59.20 
38 48.10 36.71 59.64 33.49 62.95 39 48.15 36.90 59.53 33.71 62.81 38 45.78 34.79 57.08 31.69 60.37 
39 49.37 37.92 60.86 34.66 64.15 40 49.38 38.08 60.73 34.86 63.98 39 46.99 35.93 58.26 32.80 61.53 

 N = 80  N = 82 40 48.19 37.08 59.44 33.92 62.68 
0 0.00 0.00 4.51 0.00 6.41 0 0.00 0.00 4.40 0.00 6.26 41 49.40 38.24 60.60 35.05 63.82 
1 1.25 0.03 6.77 0.01 8.92 1 1.22 0.03 6.61 0.01 8.71  N = 84 
2 2.50 0.30 8.74 0.13 11.08 2 2.44 0.30 8.53 0.13 10.82 0 0.00 0.00 4.30 0.00 6.11 
3 3.75 0.78 10.57 0.43 13.05 3 3.66 0.76 10.32 0.42 12.75 1 1.19 0.03 6.46 0.01 8.51 
4 5.00 1.38 12.31 0.85 14.92 4 4.88 1.34 12.02 0.83 14.57 2 2.38 0.29 8.34 0.12 10.57 
5 6.25 2.06 13.99 1.37 16.70 5 6.10 2.01 13.66 1.34 16.31 3 3.57 0.74 10.08 0.41 12.46 
6 7.50 2.80 15.61 1.96 18.42 6 7.32 2.73 15.25 1.92 18.00 4 4.76 1.31 11.75 0.81 14.24 
7 8.75 3.59 17.20 2.61 20.09 7 8.54 3.50 16.80 2.55 19.63 5 5.95 1.96 13.35 1.31 15.95 
8 10.00 4.42 18.76 3.31 21.72 8 9.76 4.31 18.32 3.22 21.22 6 7.14 2.67 14.90 1.87 17.59 
9 11.25 5.28 20.28 4.04 23.31 9 10.98 5.14 19.82 3.94 22.78 7 8.33 3.42 16.42 2.48 19.19 
10 12.50 6.16 21.79 4.81 24.87 10 12.20 6.01 21.29 4.69 24.31 8 9.52 4.20 17.91 3.15 20.75 
11 13.75 7.07 23.27 5.61 26.41 11 13.41 6.89 22.74 5.46 25.81 9 10.71 5.02 19.37 3.84 22.28 
12 15.00 8.00 24.74 6.43 27.92 12 14.63 7.80 24.17 6.27 27.29 10 11.90 5.86 20.81 4.57 23.77 
13 16.25 8.95 26.18 7.28 29.41 13 15.85 8.72 25.58 7.09 28.75 11 13.10 6.72 22.22 5.33 25.25 
14 17.50 9.91 27.62 8.14 30.88 14 17.07 9.66 26.98 7.94 30.19 12 14.29 7.61 23.62 6.11 26.69 
15 18.75 10.89 29.03 9.03 32.33 15 18.29 10.62 28.37 8.80 31.61 13 15.48 8.51 25.01 6.91 28.12 
16 20.00 11.89 30.44 9.94 33.77 16 19.51 11.58 29.74 9.68 33.02 14 16.67 9.42 26.38 7.74 29.53 
17 21.25 12.89 31.83 10.86 35.19 17 20.73 12.57 31.11 10.58 34.41 15 17.86 10.35 27.74 8.58 30.92 
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Confidence intervals (%) for the binomial distribution (N = 85-89) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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N = 84 (continued)  N = 86 (continued)  N = 88 (continued) 
16 19.05 11.30 29.08 9.44 32.30 12 13.95 7.42 23.11 5.96 26.12 6 6.82 2.54 14.25 1.78 16.84 
17 20.24 12.25 30.41 10.32 33.66 13 15.12 8.30 24.46 6.75 27.52 7 7.95 3.26 15.70 2.37 18.37 
18 21.43 13.22 31.74 11.21 35.01 14 16.28 9.20 25.80 7.55 28.90 8 9.09 4.01 17.13 3.00 19.87 
19 22.62 14.20 33.05 12.11 36.34 15 17.44 10.10 27.13 8.37 30.26 9 10.23 4.78 18.53 3.66 21.33 
20 23.81 15.19 34.35 13.03 37.66 16 18.60 11.02 28.45 9.21 31.61 10 11.36 5.59 19.91 4.36 22.77 
21 25.00 16.19 35.64 13.96 38.97 17 19.77 11.96 29.75 10.07 32.94 11 12.50 6.41 21.27 5.08 24.18 
22 26.19 17.20 36.93 14.90 40.27 18 20.93 12.90 31.05 10.93 34.26 12 13.64 7.25 22.61 5.82 25.57 
23 27.38 18.21 38.20 15.85 41.56 19 22.09 13.86 32.33 11.81 35.57 13 14.77 8.11 23.94 6.59 26.94 
24 28.57 19.24 39.47 16.82 42.83 20 23.26 14.82 33.61 12.71 36.87 14 15.91 8.98 25.25 7.37 28.29 
25 29.76 20.27 40.73 17.79 44.10 21 24.42 15.79 34.87 13.61 38.15 15 17.05 9.87 26.55 8.17 29.63 
26 30.95 21.31 41.98 18.77 45.35 22 25.58 16.78 36.13 14.53 39.42 16 18.18 10.76 27.84 8.99 30.95 
27 32.14 22.36 43.22 19.77 46.60 23 26.74 17.77 37.38 15.46 40.69 17 19.32 11.68 29.12 9.82 32.26 
28 33.33 23.42 44.46 20.77 47.84 24 27.91 18.77 38.62 16.40 41.94 18 20.45 12.60 30.39 10.67 33.55 
29 34.52 24.48 45.69 21.78 49.07 25 29.07 19.78 39.86 17.35 43.18 19 21.59 13.53 31.65 11.53 34.84 
30 35.71 25.55 46.92 22.81 50.29 26 30.23 20.79 41.08 18.31 44.41 20 22.73 14.47 32.89 12.40 36.11 
31 36.90 26.63 48.13 23.83 51.50 27 31.40 21.81 42.30 19.27 45.64 21 23.86 15.42 34.14 13.29 37.37 
32 38.10 27.71 49.34 24.87 52.70 28 32.56 22.84 43.52 20.25 46.85 22 25.00 16.38 35.37 14.18 38.61 
33 39.29 28.80 50.55 25.92 53.90 29 33.72 23.88 44.72 21.24 48.06 23 26.14 17.34 36.59 15.09 39.85 
34 40.48 29.90 51.75 26.98 55.09 30 34.88 24.92 45.92 22.23 49.26 24 27.27 18.32 37.81 16.00 41.08 
35 41.67 31.00 52.94 28.04 56.27 31 36.05 25.97 47.12 23.23 50.45 25 28.41 19.30 39.02 16.93 42.30 
36 42.86 32.11 54.12 29.11 57.44 32 37.21 27.02 48.30 24.24 51.63 26 29.55 20.29 40.22 17.86 43.51 
37 44.05 33.22 55.30 30.19 58.60 33 38.37 28.08 49.49 25.26 52.80 27 30.68 21.29 41.42 18.80 44.71 
38 45.24 34.34 56.48 31.27 59.76 34 39.53 29.15 50.66 26.29 53.97 28 31.82 22.29 42.61 19.76 45.91 
39 46.43 35.47 57.65 32.37 60.90 35 40.70 30.22 51.83 27.32 55.13 29 32.95 23.30 43.79 20.72 47.09 
40 47.62 36.60 58.81 33.47 62.04 36 41.86 31.30 52.99 28.37 56.28 30 34.09 24.32 44.97 21.68 48.27 
41 48.81 37.74 59.96 34.58 63.18 37 43.02 32.39 54.15 29.41 57.43 31 35.23 25.34 46.14 22.66 49.44 
42 50.00 38.89 61.11 35.70 64.30 38 44.19 33.48 55.30 30.47 58.56 32 36.36 26.37 47.31 23.65 50.60 

 N = 85 39 45.35 34.58 56.45 31.54 59.69 33 37.50 27.40 48.47 24.64 51.75 
0 0.00 0.00 4.25 0.00 6.04 40 46.51 35.68 57.59 32.61 60.81 34 38.64 28.44 49.62 25.64 52.90 
1 1.18 0.03 6.38 0.01 8.42 41 47.67 36.79 58.73 33.69 61.93 35 39.77 29.49 50.77 26.64 54.04 
2 2.35 0.29 8.24 0.12 10.45 42 48.84 37.90 59.86 34.77 63.04 36 40.91 30.54 51.91 27.66 55.17 
3 3.53 0.73 9.97 0.40 12.32 43 50.00 39.02 60.98 35.86 64.14 37 42.05 31.60 53.05 28.68 56.30 
4 4.71 1.30 11.61 0.80 14.08  N = 87 38 43.18 32.66 54.18 29.71 57.41 
5 5.88 1.94 13.20 1.29 15.77 0 0.00 0.00 4.15 0.00 5.91 39 44.32 33.73 55.30 30.74 58.52 
6 7.06 2.63 14.73 1.85 17.40 1 1.15 0.03 6.24 0.01 8.23 40 45.45 34.80 56.42 31.79 59.63 
7 8.24 3.38 16.23 2.45 18.98 2 2.30 0.28 8.06 0.12 10.22 41 46.59 35.88 57.54 32.84 60.72 
8 9.41 4.15 17.71 3.11 20.52 3 3.45 0.72 9.75 0.39 12.05 42 47.73 36.96 58.65 33.89 61.81 
9 10.59 4.96 19.15 3.80 22.03 4 4.60 1.27 11.36 0.78 13.78 43 48.86 38.05 59.75 34.96 62.90 
10 11.76 5.79 20.57 4.52 23.51 5 5.75 1.89 12.90 1.26 15.43 44 50.00 39.15 60.85 36.03 63.97 
11 12.94 6.64 21.98 5.26 24.97 6 6.90 2.57 14.41 1.80 17.02  N = 89 
12 14.12 7.51 23.36 6.04 26.40 7 8.05 3.30 15.88 2.40 18.57 0 0.00 0.00 4.06 0.00 5.78 
13 15.29 8.40 24.73 6.83 27.82 8 9.20 4.05 17.32 3.03 20.08 1 1.12 0.03 6.10 0.01 8.05 
14 16.47 9.31 26.09 7.64 29.21 9 10.34 4.84 18.73 3.71 21.56 2 2.25 0.27 7.88 0.12 10.00 
15 17.65 10.23 27.43 8.48 30.59 10 11.49 5.65 20.12 4.41 23.01 3 3.37 0.70 9.54 0.38 11.79 
16 18.82 11.16 28.76 9.33 31.95 11 12.64 6.48 21.50 5.14 24.44 4 4.49 1.24 11.11 0.77 13.48 
17 20.00 12.10 30.08 10.19 33.30 12 13.79 7.34 22.85 5.89 25.84 5 5.62 1.85 12.63 1.23 15.10 
18 21.18 13.06 31.39 11.07 34.63 13 14.94 8.20 24.20 6.67 27.23 6 6.74 2.51 14.10 1.76 16.66 
19 22.35 14.03 32.69 11.96 35.95 14 16.09 9.09 25.52 7.46 28.59 7 7.87 3.22 15.54 2.34 18.18 
20 23.53 15.00 33.97 12.87 37.26 15 17.24 9.98 26.84 8.27 29.94 8 8.99 3.96 16.95 2.96 19.66 
21 24.71 15.99 35.25 13.78 38.56 16 18.39 10.89 28.14 9.10 31.28 9 10.11 4.73 18.33 3.62 21.11 
22 25.88 16.99 36.52 14.71 39.84 17 19.54 11.81 29.43 9.94 32.60 10 11.24 5.52 19.69 4.31 22.53 
23 27.06 17.99 37.79 15.65 41.12 18 20.69 12.75 30.71 10.80 33.91 11 12.36 6.33 21.04 5.02 23.93 
24 28.24 19.00 39.04 16.61 42.38 19 21.84 13.69 31.98 11.67 35.20 12 13.48 7.17 22.37 5.75 25.30 
25 29.41 20.02 40.29 17.57 43.63 20 22.99 14.64 33.25 12.55 36.48 13 14.61 8.01 23.68 6.51 26.66 
26 30.59 21.05 41.53 18.54 44.88 21 24.14 15.60 34.50 13.45 37.75 14 15.73 8.88 24.98 7.29 28.00 
27 31.76 22.08 42.76 19.52 46.12 22 25.29 16.58 35.75 14.35 39.02 15 16.85 9.75 26.27 8.08 29.32 
28 32.94 23.13 43.98 20.51 47.34 23 26.44 17.55 36.98 15.27 40.27 16 17.98 10.64 27.55 8.89 30.63 
29 34.12 24.18 45.20 21.51 48.56 24 27.59 18.54 38.21 16.20 41.51 17 19.10 11.54 28.81 9.71 31.93 
30 35.29 25.23 46.41 22.51 49.77 25 28.74 19.54 39.43 17.13 42.74 18 20.22 12.45 30.07 10.55 33.21 
31 36.47 26.29 47.62 23.53 50.97 26 29.89 20.54 40.65 18.08 43.96 19 21.35 13.37 31.31 11.39 34.48 
32 37.65 27.36 48.82 24.55 52.16 27 31.03 21.55 41.86 19.04 45.17 20 22.47 14.30 32.55 12.26 35.74 
33 38.82 28.44 50.01 25.59 53.35 28 32.18 22.56 43.06 20.00 46.38 21 23.60 15.24 33.78 13.13 36.99 
34 40.00 29.52 51.20 26.63 54.52 29 33.33 23.58 44.25 20.97 47.57 22 24.72 16.19 35.00 14.01 38.22 
35 41.18 30.61 52.38 27.68 55.69 30 34.48 24.61 45.44 21.95 48.76 23 25.84 17.14 36.21 14.91 39.45 
36 42.35 31.70 53.55 28.73 56.85 31 35.63 25.65 46.62 22.94 49.94 24 26.97 18.10 37.42 15.81 40.67 
37 43.53 32.80 54.72 29.80 58.01 32 36.78 26.69 47.80 23.94 51.11 25 28.09 19.07 38.62 16.72 41.88 
38 44.71 33.91 55.89 30.87 59.15 33 37.93 27.74 48.97 24.95 52.27 26 29.21 20.05 39.81 17.65 43.07 
39 45.88 35.02 57.04 31.95 60.29 34 39.08 28.79 50.13 25.96 53.43 27 30.34 21.03 40.99 18.58 44.27 
40 47.06 36.13 58.19 33.03 61.42 35 40.23 29.85 51.29 26.98 54.58 28 31.46 22.03 42.17 19.52 45.45 
41 48.24 37.26 59.34 34.13 62.55 36 41.38 30.92 52.45 28.01 55.72 29 32.58 23.02 43.34 20.47 46.62 
42 49.41 38.39 60.48 35.23 63.66 37 42.53 31.99 53.59 29.04 56.85 30 33.71 24.03 44.51 21.42 47.79 

 N = 86 38 43.68 33.06 54.74 30.08 57.98 31 34.83 25.04 45.67 22.39 48.95 
0 0.00 0.00 4.20 0.00 5.97 39 44.83 34.15 55.87 31.13 59.10 32 35.96 26.05 46.82 23.36 50.10 
1 1.16 0.03 6.31 0.01 8.32 40 45.98 35.23 57.00 32.19 60.21 33 37.08 27.07 47.97 24.34 51.24 
2 2.33 0.28 8.15 0.12 10.34 41 47.13 36.33 58.13 33.26 61.32 34 38.20 28.10 49.11 25.32 52.38 
3 3.49 0.73 9.86 0.40 12.19 42 48.28 37.42 59.25 34.33 62.42 35 39.33 29.13 50.25 26.32 53.51 
4 4.65 1.28 11.48 0.79 13.93 43 49.43 38.53 60.36 35.40 63.51 36 40.45 30.17 51.38 27.32 54.63 
5 5.81 1.91 13.05 1.28 15.60  N = 88 37 41.57 31.21 52.51 28.33 55.75 
6 6.98 2.60 14.57 1.82 17.21 0 0.00 0.00 4.11 0.00 5.84 38 42.70 32.26 53.63 29.34 56.85 
7 8.14 3.34 16.05 2.43 18.77 1 1.14 0.03 6.17 0.01 8.14 39 43.82 33.32 54.75 30.36 57.96 
8 9.30 4.10 17.51 3.07 20.30 2 2.27 0.28 7.97 0.12 10.11 40 44.94 34.38 55.86 31.39 59.05 
9 10.47 4.90 18.94 3.75 21.79 3 3.41 0.71 9.64 0.39 11.92 41 46.07 35.44 56.96 32.43 60.14 
10 11.63 5.72 20.35 4.46 23.26 4 4.55 1.25 11.23 0.77 13.63 42 47.19 36.51 58.06 33.47 61.22 
11 12.79 6.56 21.73 5.20 24.70 5 5.68 1.87 12.76 1.25 15.26 43 48.31 37.59 59.16 34.52 62.30 
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Confidence intervals (%) for the binomial distribution (N = 90-95) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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N = 89 (continued)  N = 91 (continued)  N = 93 (continued) 
44 49.44 38.67 60.25 35.57 63.36 35 38.46 28.45 49.25 25.69 52.48 24 25.81 17.29 35.92 15.09 39.08 

 N = 90 36 39.56 29.46 50.36 26.66 53.58 25 26.88 18.21 37.08 15.96 40.25 
0 0.00 0.00 4.02 0.00 5.72 37 40.66 30.48 51.47 27.65 54.68 26 27.96 19.14 38.22 16.84 41.41 
1 1.11 0.03 6.04 0.01 7.97 38 41.76 31.50 52.57 28.63 55.77 27 29.03 20.08 39.36 17.72 42.56 
2 2.22 0.27 7.80 0.12 9.90 39 42.86 32.53 53.66 29.63 56.85 28 30.11 21.03 40.50 18.62 43.70 
3 3.33 0.69 9.43 0.38 11.67 40 43.96 33.56 54.75 30.63 57.93 29 31.18 21.98 41.63 19.52 44.83 
4 4.44 1.22 10.99 0.76 13.34 41 45.05 34.60 55.84 31.64 59.00 30 32.26 22.93 42.75 20.43 45.96 
5 5.56 1.83 12.49 1.22 14.94 42 46.15 35.64 56.92 32.65 60.07 31 33.33 23.89 43.87 21.35 47.08 
6 6.67 2.49 13.95 1.74 16.48 43 47.25 36.69 58.00 33.68 61.12 32 34.41 24.86 44.98 22.27 48.19 
7 7.78 3.18 15.37 2.32 17.99 44 48.35 37.74 59.07 34.70 62.18 33 35.48 25.83 46.09 23.20 49.29 
8 8.89 3.92 16.77 2.93 19.45 45 49.45 38.80 60.14 35.74 63.22 34 36.56 26.81 47.19 24.14 50.39 
9 10.00 4.68 18.14 3.58 20.89  N = 92 35 37.63 27.79 48.28 25.09 51.48 
10 11.11 5.46 19.49 4.26 22.29 0 0.00 0.00 3.93 0.00 5.60 36 38.71 28.78 49.38 26.04 52.57 
11 12.22 6.26 20.82 4.96 23.68 1 1.09 0.03 5.91 0.01 7.80 37 39.78 29.78 50.46 27.00 53.65 
12 13.33 7.08 22.13 5.69 25.04 2 2.17 0.26 7.63 0.11 9.69 38 40.86 30.77 51.54 27.96 54.72 
13 14.44 7.92 23.43 6.44 26.38 3 3.26 0.68 9.24 0.37 11.43 39 41.94 31.78 52.62 28.93 55.79 
14 15.56 8.77 24.72 7.20 27.71 4 4.35 1.20 10.76 0.74 13.06 40 43.01 32.78 53.69 29.91 56.85 
15 16.67 9.64 26.00 7.98 29.02 5 5.43 1.79 12.23 1.19 14.63 41 44.09 33.80 54.76 30.89 57.90 
16 17.78 10.52 27.26 8.78 30.32 6 6.52 2.43 13.66 1.70 16.15 42 45.16 34.81 55.83 31.88 58.95 
17 18.89 11.41 28.51 9.60 31.60 7 7.61 3.11 15.05 2.26 17.62 43 46.24 35.84 56.88 32.87 59.99 
18 20.00 12.31 29.75 10.42 32.87 8 8.70 3.83 16.42 2.86 19.05 44 47.31 36.86 57.94 33.88 61.03 
19 21.11 13.21 30.99 11.26 34.13 9 9.78 4.57 17.76 3.50 20.46 45 48.39 37.89 58.99 34.88 62.06 
20 22.22 14.13 32.21 12.11 35.38 10 10.87 5.34 19.08 4.16 21.84 46 49.46 38.93 60.03 35.90 63.09 
21 23.33 15.06 33.43 12.97 36.61 11 11.96 6.12 20.39 4.85 23.20  N = 94 
22 24.44 16.00 34.64 13.85 37.84 12 13.04 6.93 21.68 5.56 24.53 0 0.00 0.00 3.85 0.00 5.48 
23 25.56 16.94 35.84 14.73 39.05 13 14.13 7.74 22.95 6.29 25.85 1 1.06 0.03 5.79 0.01 7.64 
24 26.67 17.89 37.03 15.62 40.26 14 15.22 8.58 24.21 7.04 27.15 2 2.13 0.26 7.48 0.11 9.49 
25 27.78 18.85 38.22 16.52 41.46 15 16.30 9.42 25.46 7.80 28.44 3 3.19 0.66 9.04 0.36 11.19 
26 28.89 19.82 39.40 17.44 42.65 16 17.39 10.28 26.70 8.58 29.71 4 4.26 1.17 10.54 0.72 12.80 
27 30.00 20.79 40.57 18.36 43.83 17 18.48 11.15 27.93 9.38 30.97 5 5.32 1.75 11.98 1.16 14.33 
28 31.11 21.77 41.74 19.28 45.00 18 19.57 12.03 29.15 10.18 32.22 6 6.38 2.38 13.38 1.67 15.82 
29 32.22 22.75 42.90 20.22 46.16 19 20.65 12.92 30.36 11.00 33.45 7 7.45 3.05 14.74 2.21 17.26 
30 33.33 23.74 44.05 21.16 47.32 20 21.74 13.81 31.56 11.83 34.67 8 8.51 3.75 16.08 2.80 18.67 
31 34.44 24.74 45.20 22.12 48.47 21 22.83 14.72 32.75 12.68 35.89 9 9.57 4.47 17.40 3.42 20.05 
32 35.56 25.74 46.35 23.08 49.61 22 23.91 15.63 33.94 13.53 37.09 10 10.64 5.22 18.70 4.07 21.40 
33 36.67 26.75 47.49 24.04 50.74 23 25.00 16.55 35.11 14.39 38.28 11 11.70 5.99 19.97 4.74 22.74 
34 37.78 27.77 48.62 25.02 51.87 24 26.09 17.48 36.29 15.26 39.47 12 12.77 6.77 21.24 5.44 24.05 
35 38.89 28.79 49.74 26.00 52.99 25 27.17 18.42 37.45 16.14 40.64 13 13.83 7.57 22.49 6.15 25.34 
36 40.00 29.81 50.87 26.99 54.10 26 28.26 19.36 38.61 17.03 41.81 14 14.89 8.39 23.72 6.88 26.62 
37 41.11 30.84 51.98 27.98 55.21 27 29.35 20.31 39.76 17.93 42.97 15 15.96 9.22 24.95 7.63 27.88 
38 42.22 31.88 53.09 28.98 56.31 28 30.43 21.27 40.90 18.83 44.12 16 17.02 10.05 26.16 8.39 29.13 
39 43.33 32.92 54.20 29.99 57.40 29 31.52 22.23 42.04 19.75 45.27 17 18.09 10.90 27.37 9.17 30.36 
40 44.44 33.96 55.30 31.01 58.49 30 32.61 23.20 43.18 20.67 46.40 18 19.15 11.76 28.56 9.96 31.59 
41 45.56 35.02 56.40 32.03 59.57 31 33.70 24.17 44.30 21.60 47.53 19 20.21 12.63 29.75 10.76 32.80 
42 46.67 36.07 57.49 33.06 60.64 32 34.78 25.15 45.43 22.53 48.65 20 21.28 13.51 30.93 11.57 34.00 
43 47.78 37.13 58.57 34.09 61.71 33 35.87 26.13 46.54 23.48 49.77 21 22.34 14.39 32.10 12.39 35.19 
44 48.89 38.20 59.65 35.13 62.77 34 36.96 27.12 47.66 24.43 50.87 22 23.40 15.29 33.26 13.22 36.37 
45 50.00 39.27 60.73 36.18 63.82 35 38.04 28.12 48.76 25.38 51.98 23 24.47 16.19 34.42 14.07 37.54 

 N = 91 36 39.13 29.12 49.86 26.35 53.07 24 25.53 17.09 35.57 14.92 38.71 
0 0.00 0.00 3.97 0.00 5.66 37 40.22 30.12 50.96 27.32 54.16 25 26.60 18.01 36.71 15.78 39.86 
1 1.10 0.03 5.97 0.01 7.88 38 41.30 31.13 52.05 28.29 55.24 26 27.66 18.93 37.85 16.65 41.01 
2 2.20 0.27 7.71 0.11 9.79 39 42.39 32.15 53.14 29.28 56.32 27 28.72 19.86 38.98 17.52 42.15 
3 3.30 0.69 9.33 0.37 11.55 40 43.48 33.17 54.22 30.27 57.38 28 29.79 20.79 40.10 18.41 43.28 
4 4.40 1.21 10.87 0.75 13.20 41 44.57 34.19 55.30 31.26 58.45 29 30.85 21.73 41.22 19.30 44.40 
5 5.49 1.81 12.36 1.20 14.78 42 45.65 35.22 56.37 32.26 59.50 30 31.91 22.67 42.33 20.20 45.52 
6 6.59 2.46 13.80 1.72 16.31 43 46.74 36.26 57.44 33.27 60.55 31 32.98 23.62 43.44 21.10 46.63 
7 7.69 3.15 15.21 2.29 17.80 44 47.83 37.30 58.50 34.28 61.60 32 34.04 24.58 44.54 22.02 47.73 
8 8.79 3.87 16.59 2.90 19.25 45 48.91 38.34 59.56 35.30 62.64 33 35.11 25.54 45.64 22.94 48.83 
9 9.89 4.62 17.95 3.54 20.67 46 50.00 39.39 60.61 36.33 63.67 34 36.17 26.51 46.73 23.86 49.92 
10 10.99 5.40 19.28 4.21 22.06  N = 93 35 37.23 27.48 47.82 24.80 51.00 
11 12.09 6.19 20.60 4.91 23.43 0 0.00 0.00 3.89 0.00 5.54 36 38.30 28.46 48.90 25.74 52.08 
12 13.19 7.00 21.90 5.62 24.78 1 1.08 0.03 5.85 0.01 7.72 37 39.36 29.44 49.98 26.68 53.15 
13 14.29 7.83 23.19 6.36 26.12 2 2.15 0.26 7.55 0.11 9.59 38 40.43 30.42 51.05 27.64 54.21 
14 15.38 8.67 24.46 7.12 27.43 3 3.23 0.67 9.14 0.37 11.31 39 41.49 31.41 52.12 28.59 55.27 
15 16.48 9.53 25.73 7.89 28.73 4 4.30 1.18 10.65 0.73 12.93 40 42.55 32.41 53.18 29.56 56.32 
16 17.58 10.40 26.98 8.68 30.01 5 5.38 1.77 12.10 1.18 14.48 41 43.62 33.41 54.24 30.53 57.37 
17 18.68 11.28 28.22 9.49 31.28 6 6.45 2.40 13.52 1.68 15.98 42 44.68 34.41 55.29 31.51 58.41 
18 19.78 12.16 29.45 10.30 32.54 7 7.53 3.08 14.90 2.24 17.44 43 45.74 35.42 56.34 32.49 59.44 
19 20.88 13.06 30.67 11.13 33.79 8 8.60 3.79 16.25 2.83 18.86 44 46.81 36.44 57.39 33.48 60.47 
20 21.98 13.97 31.88 11.97 35.02 9 9.68 4.52 17.58 3.46 20.25 45 47.87 37.46 58.43 34.47 61.50 
21 23.08 14.89 33.09 12.82 36.25 10 10.75 5.28 18.89 4.12 21.62 46 48.94 38.48 59.46 35.47 62.51 
22 24.18 15.81 34.28 13.69 37.46 11 11.83 6.05 20.18 4.80 22.96 47 50.00 39.51 60.49 36.48 63.52 
23 25.27 16.75 35.47 14.56 38.66 12 12.90 6.85 21.45 5.50 24.29  N = 95 
24 26.37 17.69 36.65 15.44 39.86 13 13.98 7.66 22.72 6.22 25.59 0 0.00 0.00 3.81 0.00 5.42 
25 27.47 18.63 37.83 16.33 41.05 14 15.05 8.48 23.97 6.96 26.88 1 1.05 0.03 5.73 0.01 7.56 
26 28.57 19.59 39.00 17.23 42.22 15 16.13 9.32 25.20 7.72 28.16 2 2.11 0.26 7.40 0.11 9.40 
27 29.67 20.55 40.16 18.14 43.39 16 17.20 10.17 26.43 8.49 29.42 3 3.16 0.66 8.95 0.36 11.08 
28 30.77 21.51 41.32 19.06 44.56 17 18.28 11.02 27.65 9.27 30.66 4 4.21 1.16 10.43 0.72 12.67 
29 31.87 22.49 42.47 19.98 45.71 18 19.35 11.89 28.85 10.07 31.90 5 5.26 1.73 11.86 1.15 14.19 
30 32.97 23.47 43.61 20.91 46.85 19 20.43 12.77 30.05 10.88 33.12 6 6.32 2.35 13.24 1.65 15.66 
31 34.07 24.45 44.75 21.85 47.99 20 21.51 13.66 31.24 11.70 34.33 7 7.37 3.01 14.59 2.19 17.09 
32 35.16 25.44 45.88 22.80 49.12 21 22.58 14.55 32.42 12.53 35.54 8 8.42 3.71 15.92 2.77 18.49 
33 36.26 26.44 47.01 23.76 50.25 22 23.66 15.46 33.60 13.37 36.73 9 9.47 4.42 17.22 3.39 19.85 
34 37.36 27.44 48.13 24.72 51.37 23 24.73 16.37 34.76 14.23 37.91 10 10.53 5.16 18.51 4.03 21.19 
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Confidence intervals (%) for the binomial distribution (N = 96-99) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

N = 95 (continued)  N = 96 (continued)  N = 98 (continued) 
11 11.58 5.92 19.77 4.69 22.51 46 47.92 37.61 58.36 34.65 61.39 30 30.61 21.70 40.74 19.31 43.85 
12 12.63 6.70 21.03 5.38 23.81 47 48.96 38.61 59.37 35.63 62.39 31 31.63 22.61 41.80 20.18 44.92 
13 13.68 7.49 22.26 6.08 25.09 48 50.00 39.62 60.38 36.62 63.38 32 32.65 23.52 42.87 21.05 45.99 
14 14.74 8.30 23.49 6.81 26.36  N = 97 33 33.67 24.44 43.93 21.93 47.05 
15 15.79 9.12 24.70 7.55 27.61 0 0.00 0.00 3.73 0.00 5.32 34 34.69 25.36 44.98 22.81 48.11 
16 16.84 9.94 25.90 8.30 28.84 1 1.03 0.03 5.61 0.01 7.41 35 35.71 26.29 46.03 23.70 49.15 
17 17.89 10.78 27.10 9.07 30.07 2 2.06 0.25 7.25 0.11 9.21 36 36.73 27.22 47.07 24.60 50.20 
18 18.95 11.63 28.28 9.85 31.28 3 3.09 0.64 8.77 0.35 10.86 37 37.76 28.16 48.12 25.50 51.23 
19 20.00 12.49 29.46 10.64 32.48 4 4.12 1.13 10.22 0.70 12.42 38 38.78 29.10 49.15 26.41 52.26 
20 21.05 13.36 30.62 11.44 33.67 5 5.15 1.69 11.62 1.13 13.91 39 39.80 30.04 50.18 27.32 53.29 
21 22.11 14.23 31.78 12.25 34.85 6 6.19 2.30 12.98 1.61 15.35 40 40.82 30.99 51.21 28.24 54.31 
22 23.16 15.12 32.94 13.08 36.02 7 7.22 2.95 14.30 2.14 16.76 41 41.84 31.95 52.23 29.17 55.32 
23 24.21 16.01 34.08 13.91 37.18 8 8.25 3.63 15.61 2.71 18.13 42 42.86 32.90 53.25 30.10 56.33 
24 25.26 16.91 35.22 14.75 38.34 9 9.28 4.33 16.88 3.31 19.47 43 43.88 33.87 54.27 31.03 57.34 
25 26.32 17.81 36.35 15.60 39.48 10 10.31 5.06 18.14 3.94 20.78 44 44.90 34.83 55.28 31.97 58.33 
26 27.37 18.72 37.48 16.46 40.62 11 11.34 5.80 19.39 4.59 22.08 45 45.92 35.80 56.29 32.92 59.33 
27 28.42 19.64 38.60 17.32 41.75 12 12.37 6.56 20.61 5.26 23.35 46 46.94 36.78 57.29 33.87 60.31 
28 29.47 20.56 39.71 18.20 42.87 13 13.40 7.33 21.83 5.95 24.61 47 47.96 37.76 58.29 34.82 61.30 
29 30.53 21.49 40.82 19.08 43.98 14 14.43 8.12 23.03 6.66 25.85 48 48.98 38.74 59.28 35.79 62.27 
30 31.58 22.42 41.92 19.97 45.09 15 15.46 8.92 24.22 7.39 27.08 49 50.00 39.73 60.27 36.75 63.25 
31 32.63 23.36 43.02 20.86 46.19 16 16.49 9.73 25.40 8.12 28.29  N = 99 
32 33.68 24.31 44.11 21.77 47.28 17 17.53 10.55 26.57 8.87 29.50 0 0.00 0.00 3.66 0.00 5.21 
33 34.74 25.26 45.20 22.68 48.37 18 18.56 11.38 27.73 9.63 30.69 1 1.01 0.03 5.50 0.01 7.27 
34 35.79 26.21 46.28 23.59 49.45 19 19.59 12.22 28.89 10.41 31.87 2 2.02 0.25 7.11 0.11 9.03 
35 36.84 27.17 47.36 24.51 50.53 20 20.62 13.07 30.03 11.19 33.03 3 3.03 0.63 8.60 0.34 10.65 
36 37.89 28.14 48.43 25.44 51.59 21 21.65 13.93 31.17 11.99 34.19 4 4.04 1.11 10.02 0.69 12.18 
37 38.95 29.11 49.50 26.38 52.66 22 22.68 14.79 32.30 12.79 35.34 5 5.05 1.66 11.39 1.11 13.64 
38 40.00 30.08 50.56 27.32 53.71 23 23.71 15.66 33.42 13.61 36.49 6 6.06 2.26 12.73 1.58 15.06 
39 41.05 31.06 51.62 28.26 54.76 24 24.74 16.54 34.54 14.43 37.62 7 7.07 2.89 14.03 2.10 16.44 
40 42.11 32.04 52.67 29.22 55.81 25 25.77 17.42 35.65 15.26 38.74 8 8.08 3.55 15.30 2.66 17.78 
41 43.16 33.03 53.72 30.18 56.84 26 26.80 18.32 36.76 16.10 39.86 9 9.09 4.24 16.56 3.25 19.10 
42 44.21 34.02 54.77 31.14 57.88 27 27.84 19.21 37.86 16.94 40.97 10 10.10 4.95 17.79 3.86 20.39 
43 45.26 35.02 55.81 32.11 58.90 28 28.87 20.11 38.95 17.80 42.07 11 11.11 5.68 19.01 4.50 21.66 
44 46.32 36.02 56.85 33.09 59.92 29 29.90 21.02 40.04 18.66 43.17 12 12.12 6.42 20.22 5.15 22.91 
45 47.37 37.03 57.88 34.07 60.94 30 30.93 21.93 41.12 19.53 44.26 13 13.13 7.18 21.41 5.83 24.15 
46 48.42 38.04 58.90 35.06 61.95 31 31.96 22.85 42.20 20.40 45.34 14 14.14 7.95 22.59 6.52 25.37 
47 49.47 39.05 59.93 36.05 62.95 32 32.99 23.78 43.27 21.28 46.41 15 15.15 8.74 23.76 7.23 26.57 

 N = 96 33 34.02 24.70 44.34 22.17 47.48 16 16.16 9.53 24.91 7.95 27.76 
0 0.00 0.00 3.77 0.00 5.37 34 35.05 25.64 45.41 23.07 48.55 17 17.17 10.33 26.06 8.69 28.94 
1 1.04 0.03 5.67 0.01 7.49 35 36.08 26.58 46.46 23.97 49.60 18 18.18 11.15 27.20 9.43 30.11 
2 2.08 0.25 7.32 0.11 9.30 36 37.11 27.52 47.52 24.87 50.65 19 19.19 11.97 28.34 10.19 31.27 
3 3.13 0.65 8.86 0.36 10.97 37 38.14 28.47 48.57 25.79 51.70 20 20.20 12.80 29.46 10.96 32.42 
4 4.17 1.15 10.33 0.71 12.54 38 39.18 29.42 49.61 26.70 52.74 21 21.21 13.64 30.58 11.73 33.56 
5 5.21 1.71 11.74 1.14 14.05 39 40.21 30.37 50.65 27.63 53.77 22 22.22 14.48 31.69 12.52 34.69 
6 6.25 2.33 13.11 1.63 15.51 40 41.24 31.33 51.69 28.56 54.80 23 23.23 15.33 32.79 13.32 35.81 
7 7.29 2.98 14.45 2.17 16.92 41 42.27 32.30 52.72 29.49 55.82 24 24.24 16.19 33.89 14.12 36.93 
8 8.33 3.67 15.76 2.74 18.30 42 43.30 33.27 53.75 30.44 56.84 25 25.25 17.06 34.98 14.93 38.03 
9 9.38 4.38 17.05 3.35 19.66 43 44.33 34.24 54.77 31.38 57.85 26 26.26 17.93 36.07 15.75 39.13 
10 10.42 5.11 18.32 3.98 20.99 44 45.36 35.22 55.79 32.33 58.85 27 27.27 18.80 37.15 16.58 40.22 
11 11.46 5.86 19.58 4.64 22.29 45 46.39 36.20 56.81 33.29 59.86 28 28.28 19.69 38.22 17.42 41.31 
12 12.50 6.63 20.82 5.32 23.58 46 47.42 37.19 57.82 34.26 60.85 29 29.29 20.57 39.29 18.26 42.38 
13 13.54 7.41 22.04 6.02 24.85 47 48.45 38.18 58.82 35.22 61.84 30 30.30 21.47 40.36 19.11 43.45 
14 14.58 8.21 23.26 6.73 26.10 48 49.48 39.17 59.83 36.20 62.82 31 31.31 22.36 41.41 19.96 44.52 
15 15.63 9.02 24.46 7.47 27.34  N = 98 32 32.32 23.27 42.47 20.82 45.57 
16 16.67 9.84 25.65 8.21 28.57 0 0.00 0.00 3.69 0.00 5.26 33 33.33 24.18 43.52 21.69 46.63 
17 17.71 10.67 26.83 8.97 29.78 1 1.02 0.03 5.55 0.01 7.34 34 34.34 25.09 44.56 22.56 47.67 
18 18.75 11.51 28.00 9.74 30.98 2 2.04 0.25 7.18 0.11 9.12 35 35.35 26.01 45.60 23.44 48.71 
19 19.79 12.36 29.17 10.52 32.17 3 3.06 0.64 8.69 0.35 10.75 36 36.36 26.93 46.64 24.33 49.75 
20 20.83 13.21 30.33 11.32 33.35 4 4.08 1.12 10.12 0.69 12.30 37 37.37 27.85 47.67 25.22 50.77 
21 21.88 14.08 31.47 12.12 34.52 5 5.10 1.68 11.51 1.12 13.78 38 38.38 28.78 48.70 26.12 51.80 
22 22.92 14.95 32.61 12.93 35.68 6 6.12 2.28 12.85 1.60 15.21 39 39.39 29.72 49.72 27.02 52.81 
23 23.96 15.83 33.75 13.76 36.83 7 7.14 2.92 14.16 2.12 16.60 40 40.40 30.66 50.74 27.93 53.83 
24 25.00 16.72 34.88 14.59 37.97 8 8.16 3.59 15.45 2.69 17.95 41 41.41 31.60 51.76 28.84 54.83 
25 26.04 17.62 36.00 15.43 39.11 9 9.18 4.29 16.72 3.28 19.28 42 42.42 32.55 52.77 29.76 55.83 
26 27.08 18.52 37.11 16.28 40.24 10 10.20 5.00 17.97 3.90 20.58 43 43.43 33.50 53.77 30.69 56.83 
27 28.13 19.42 38.22 17.13 41.36 11 11.22 5.74 19.20 4.54 21.87 44 44.44 34.45 54.78 31.62 57.82 
28 29.17 20.33 39.33 18.00 42.47 12 12.24 6.49 20.41 5.21 23.13 45 45.45 35.41 55.77 32.55 58.81 
29 30.21 21.25 40.43 18.87 43.57 13 13.27 7.26 21.62 5.89 24.38 46 46.46 36.38 56.77 33.49 59.79 
30 31.25 22.18 41.52 19.75 44.67 14 14.29 8.04 22.81 6.59 25.61 47 47.47 37.34 57.76 34.44 60.76 
31 32.29 23.10 42.61 20.63 45.76 15 15.31 8.83 23.99 7.31 26.82 48 48.48 38.32 58.75 35.39 61.73 
32 33.33 24.04 43.69 21.52 46.85 16 16.33 9.63 25.16 8.04 28.03 49 49.49 39.29 59.73 36.34 62.70 
33 34.38 24.98 44.77 22.42 47.92 17 17.35 10.44 26.31 8.78 29.22  
34 35.42 25.92 45.84 23.33 48.99 18 18.37 11.26 27.47 9.53 30.40 
35 36.46 26.87 46.91 24.24 50.06 19 19.39 12.10 28.61 10.30 31.57 
36 37.50 27.82 47.97 25.16 51.12 20 20.41 12.93 29.74 11.07 32.72 
37 38.54 28.78 49.03 26.08 52.17 21 21.43 13.78 30.87 11.86 33.87 
38 39.58 29.75 50.08 27.01 53.22 22 22.45 14.64 31.99 12.65 35.01 
39 40.63 30.71 51.13 27.94 54.26 23 23.47 15.50 33.11 13.46 36.15 
40 41.67 31.68 52.18 28.88 55.30 24 24.49 16.36 34.21 14.27 37.27 
41 42.71 32.66 53.22 29.83 56.33 25 25.51 17.24 35.31 15.09 38.38 
42 43.75 33.64 54.25 30.78 57.35 26 26.53 18.12 36.41 15.92 39.49 
43 44.79 34.63 55.29 31.74 58.37 27 27.55 19.01 37.50 16.76 40.59 
44 45.83 35.62 56.31 32.71 59.38 28 28.57 19.90 38.58 17.60 41.69 
45 46.88 36.61 57.34 33.68 60.39 29 29.59 20.79 39.66 18.46 42.77 
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Confidence intervals (%) for the binomial distribution (N = 100-150) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
 

 

r 
p 









 100

N

r  
Confidence intervals 

r 
p 









 100

N

r

Confidence intervals

r 
p 









 100

N

r

Confidence intervals 
95% 99% 95% 99% 95% 99% 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

N = 100   N = 125   N = 150 

0 0.00 0.00 3.62 0.00 5.16 0 0.00 0.00 2.91 0.00 4.15 0 0.00 0.00 2.43 0.00 3.47 

1 1.00 0.03 5.45 0.01 7.20 1 0.80 0.02 4.38 0.00 5.79 1 0.67 0.02 3.66 0.00 4.85 

2 2.00 0.24 7.04 0.10 8.94 2 1.60 0.19 5.66 0.08 7.21 2 1.33 0.16 4.73 0.07 6.03 

3 3.00 0.62 8.52 0.34 10.55 3 2.40 0.50 6.85 0.27 8.51 3 2.00 0.41 5.73 0.23 7.13 

4 4.00 1.10 9.93 0.68 12.06 4 3.20 0.88 7.99 0.54 9.73 4 2.67 0.73 6.69 0.45 8.16 

5 5.00 1.64 11.28 1.09 13.51 5 4.00 1.31 9.09 0.87 10.91 5 3.33 1.09 7.61 0.73 9.15 

6 6.00 2.23 12.60 1.56 14.92 6 4.80 1.78 10.15 1.25 12.05 6 4.00 1.48 8.50 1.04 10.11 

7 7.00 2.86 13.89 2.08 16.28 7 5.60 2.28 11.20 1.66 13.16 7 4.67 1.90 9.38 1.38 11.04 

8 8.00 3.52 15.16 2.63 17.61 8 6.40 2.80 12.22 2.09 14.24 8 5.33 2.33 10.24 1.74 11.95 

9 9.00 4.20 16.40 3.21 18.92 9 7.20 3.35 13.23 2.56 15.30 9 6.00 2.78 11.08 2.12 12.85 

10 10.00 4.90 17.62 3.82 20.20 10 8.00 3.90 14.22 3.04 16.35 10 6.67 3.24 11.92 2.52 13.73 

11 11.00 5.62 18.83 4.45 21.45 11 8.80 4.48 15.20 3.54 17.37 11 7.33 3.72 12.74 2.94 14.60 

12 12.00 6.36 20.02 5.10 22.70 12 9.60 5.06 16.17 4.05 18.39 12 8.00 4.20 13.56 3.36 15.45 

13 13.00 7.11 21.20 5.77 23.92 13 10.40 5.65 17.13 4.58 19.39 13 8.67 4.70 14.36 3.80 16.29 

14 14.00 7.87 22.37 6.45 25.13 14 11.20 6.26 18.08 5.13 20.37 14 9.33 5.20 15.16 4.25 17.13 

15 15.00 8.65 23.53 7.15 26.32 15 12.00 6.87 19.02 5.68 21.35 15 10.00 5.71 15.96 4.71 17.96 

16 16.00 9.43 24.68 7.87 27.51 16 12.80 7.50 19.95 6.24 22.32 16 10.67 6.22 16.74 5.18 18.77 

17 17.00 10.23 25.82 8.59 28.68 17 13.60 8.13 20.88 6.82 23.28 17 11.33 6.74 17.52 5.65 19.59 

18 18.00 11.03 26.95 9.33 29.84 18 14.40 8.76 21.80 7.40 24.23 18 12.00 7.27 18.30 6.13 20.39 

19 19.00 11.84 28.07 10.08 30.98 19 15.20 9.41 22.71 7.99 25.17 19 12.67 7.80 19.07 6.62 21.19 

20 20.00 12.67 29.18 10.84 32.12 20 16.00 10.06 23.62 8.59 26.11 20 13.33 8.34 19.84 7.11 21.98 

21 21.00 13.49 30.29 11.61 33.25 21 16.80 10.71 24.53 9.19 27.03 21 14.00 8.88 20.60 7.61 22.77 

22 22.00 14.33 31.39 12.39 34.37 22 17.60 11.37 25.43 9.81 27.96 22 14.67 9.43 21.36 8.12 23.55 

23 23.00 15.17 32.49 13.18 35.49 23 18.40 12.04 26.32 10.43 28.87 23 15.33 9.98 22.11 8.63 24.33 

24 24.00 16.02 33.57 13.97 36.59 24 19.20 12.71 27.21 11.05 29.78 24 16.00 10.53 22.86 9.14 25.10 

25 25.00 16.88 34.66 14.77 37.69 25 20.00 13.38 28.09 11.68 30.68 25 16.67 11.09 23.61 9.66 25.87 

26 26.00 17.74 35.73 15.59 38.77 26 20.80 14.06 28.97 12.32 31.58 26 17.33 11.65 24.36 10.19 26.63 

27 27.00 18.61 36.80 16.40 39.86 27 21.60 14.74 29.85 12.96 32.48 27 18.00 12.21 25.10 10.72 27.39 

28 28.00 19.48 37.87 17.23 40.93 28 22.40 15.43 30.72 13.61 33.36 28 18.67 12.78 25.84 11.25 28.15 

29 29.00 20.36 38.93 18.06 42.00 29 23.20 16.12 31.59 14.26 34.25 29 19.33 13.35 26.57 11.79 28.90 

30 30.00 21.24 39.98 18.90 43.06 30 24.00 16.82 32.46 14.92 35.13 30 20.00 13.92 27.30 12.33 29.64 

31 31.00 22.13 41.03 19.75 44.12 31 24.80 17.51 33.32 15.58 36.00 31 20.67 14.49 28.03 12.87 30.39 

32 32.00 23.02 42.08 20.60 45.17 32 25.60 18.22 34.18 16.25 36.87 32 21.33 15.07 28.76 13.42 31.13 

33 33.00 23.92 43.12 21.46 46.21 33 26.40 18.92 35.03 16.92 37.74 33 22.00 15.65 29.49 13.97 31.87 

34 34.00 24.82 44.15 22.32 47.25 34 27.20 19.63 35.88 17.59 38.60 34 22.67 16.24 30.21 14.52 32.60 

35 35.00 25.73 45.18 23.19 48.28 35 28.00 20.34 36.73 18.27 39.46 35 23.33 16.82 30.93 15.08 33.34 

36 36.00 26.64 46.21 24.07 49.30 36 28.80 21.05 37.58 18.95 40.31 36 24.00 17.41 31.65 15.64 34.06 

37 37.00 27.56 47.24 24.95 50.32 37 29.60 21.77 38.42 19.64 41.16 37 24.67 18.00 32.36 16.20 34.79 

38 38.00 28.48 48.25 25.84 51.34 38 30.40 22.49 39.26 20.33 42.01 38 25.33 18.59 33.07 16.77 35.51 

39 39.00 29.40 49.27 26.73 52.35 39 31.20 23.22 40.10 21.03 42.85 39 26.00 19.19 33.79 17.34 36.23 

40 40.00 30.33 50.28 27.63 53.35 40 32.00 23.94 40.93 21.72 43.69 40 26.67 19.78 34.49 17.91 36.95 

41 41.00 31.26 51.29 28.53 54.35 41 32.80 24.67 41.77 22.42 44.52 41 27.33 20.38 35.20 18.48 37.67 

42 42.00 32.20 52.29 29.44 55.35 42 33.60 25.40 42.60 23.13 45.36 42 28.00 20.98 35.91 19.06 38.38 

43 43.00 33.14 53.29 30.35 56.33 43 34.40 26.14 43.42 23.84 46.18 43 28.67 21.59 36.61 19.64 39.09 

44 44.00 34.08 54.28 31.27 57.32 44 35.20 26.87 44.25 24.55 47.01 44 29.33 22.19 37.31 20.22 39.80 

45 45.00 35.03 55.27 32.19 58.30 45 36.00 27.61 45.07 25.26 47.83 45 30.00 22.80 38.01 20.80 40.50 

46 46.00 35.98 56.26 33.12 59.27 46 36.80 28.35 45.89 25.98 48.65 46 30.67 23.41 38.71 21.39 41.21 

47 47.00 36.94 57.24 34.06 60.24 47 37.60 29.10 46.70 26.70 49.47 47 31.33 24.02 39.41 21.98 41.91 

48 48.00 37.90 58.22 34.99 61.20 48 38.40 29.84 47.52 27.43 50.28 48 32.00 24.63 40.10 22.57 42.61 

49 49.00 38.86 59.20 35.94 62.16 49 39.20 30.59 48.33 28.16 51.09 49 32.67 25.24 40.79 23.16 43.30 

50 50.00 39.83 60.17 36.89 63.11 50 40.00 31.34 49.14 28.89 51.90 50 33.33 25.86 41.48 23.76 44.00 

 51 40.80 32.10 49.95 29.62 52.70 51 34.00 26.47 42.17 24.35 44.69 

52 41.60 32.85 50.75 30.36 53.50 52 34.67 27.09 42.86 24.95 45.38 

53 42.40 33.61 51.56 31.10 54.30 53 35.33 27.71 43.55 25.56 46.07 

54 43.20 34.37 52.36 31.84 55.09 54 36.00 28.33 44.23 26.16 46.75 

55 44.00 35.14 53.16 32.58 55.88 55 36.67 28.96 44.92 26.77 47.44 

56 44.80 35.90 53.95 33.33 56.67 56 37.33 29.58 45.60 27.37 48.12 

57 45.60 36.67 54.75 34.08 57.46 57 38.00 30.21 46.28 27.98 48.80 

58 46.40 37.44 55.54 34.84 58.24 58 38.67 30.84 46.95 28.60 49.48 

59 47.20 38.21 56.33 35.60 59.02 59 39.33 31.47 47.63 29.21 50.15 

60 48.00 38.98 57.11 36.36 59.80 60 40.00 32.10 48.31 29.83 50.82 

61 48.80 39.76 57.90 37.12 60.57 61 40.67 32.73 48.98 30.44 51.50 

62 49.60 40.54 58.68 37.89 61.35 62 41.33 33.36 49.65 31.06 52.17 

 63 42.00 34.00 50.32 31.69 52.83 

64 42.67 34.64 50.99 32.31 53.50 

65 43.33 35.27 51.66 32.94 54.17 

66 44.00 35.91 52.33 33.56 54.83 

67 44.67 36.55 52.99 34.19 55.49 

68 45.33 37.20 53.66 34.82 56.15 

69 46.00 37.84 54.32 35.46 56.80 

70 46.67 38.49 54.98 36.09 57.46 

71 47.33 39.13 55.64 36.73 58.11 

72 48.00 39.78 56.30 37.37 58.76 

73 48.67 40.43 56.95 38.01 59.41 

74 49.33 41.08 57.61 38.65 60.06 

75 50.00 41.74 58.26 39.29 60.71 
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Confidence intervals (%) for the binomial distribution (N = 200-400) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

N = 200  N = 300  N = 400 

0 0.00 0.00 1.83 0.00 2.61 0 0.00 0.00 1.22 0.00 1.75 0 0.00 0.00 0.92 0.00 1.32 

1 0.50 0.01 2.75 0.00 3.66 1 0.33 0.01 1.84 0.00 2.45 1 0.25 0.01 1.38 0.00 1.84 

2 1.00 0.12 3.57 0.05 4.55 2 0.67 0.08 2.39 0.03 3.05 2 0.50 0.06 1.79 0.03 2.30 

3 1.50 0.31 4.32 0.17 5.38 3 1.00 0.21 2.89 0.11 3.61 3 0.75 0.15 2.18 0.08 2.72 

4 2.00 0.55 5.04 0.34 6.16 4 1.33 0.36 3.38 0.22 4.14 4 1.00 0.27 2.54 0.17 3.11 

5 2.50 0.82 5.74 0.54 6.91 5 1.67 0.54 3.85 0.36 4.65 5 1.25 0.41 2.89 0.27 3.50 

6 3.00 1.11 6.42 0.78 7.64 6 2.00 0.74 4.30 0.52 5.14 6 1.50 0.55 3.24 0.39 3.87 

7 3.50 1.42 7.08 1.03 8.35 7 2.33 0.94 4.75 0.68 5.62 7 1.75 0.71 3.57 0.51 4.23 

8 4.00 1.74 7.73 1.30 9.05 8 2.67 1.16 5.19 0.86 6.08 8 2.00 0.87 3.90 0.65 4.58 

9 4.50 2.08 8.37 1.59 9.73 9 3.00 1.38 5.62 1.05 6.54 9 2.25 1.03 4.23 0.79 4.93 

10 5.00 2.42 9.00 1.88 10.40 10 3.33 1.61 6.04 1.25 7.00 10 2.50 1.21 4.55 0.94 5.27 

11 5.50 2.78 9.63 2.19 11.06 11 3.67 1.84 6.47 1.45 7.44 11 2.75 1.38 4.87 1.09 5.61 

12 6.00 3.14 10.25 2.51 11.71 12 4.00 2.08 6.88 1.66 7.89 12 3.00 1.56 5.18 1.25 5.94 

13 6.50 3.51 10.86 2.84 12.35 13 4.33 2.33 7.30 1.88 8.32 13 3.25 1.74 5.49 1.41 6.27 

14 7.00 3.88 11.47 3.17 12.99 14 4.67 2.57 7.71 2.10 8.75 14 3.50 1.93 5.80 1.57 6.60 

15 7.50 4.26 12.07 3.51 13.62 15 5.00 2.83 8.11 2.33 9.18 15 3.75 2.11 6.11 1.74 6.93 

16 8.00 4.64 12.67 3.86 14.25 16 5.33 3.08 8.52 2.55 9.61 16 4.00 2.30 6.41 1.91 7.25 

17 8.50 5.03 13.26 4.21 14.87 17 5.67 3.34 8.92 2.79 10.03 17 4.25 2.49 6.72 2.08 7.57 

18 9.00 5.42 13.85 4.57 15.48 18 6.00 3.59 9.32 3.02 10.45 18 4.50 2.69 7.02 2.26 7.88 

19 9.50 5.82 14.44 4.93 16.09 19 6.33 3.86 9.71 3.26 10.86 19 4.75 2.88 7.32 2.44 8.20 

20 10.00 6.22 15.02 5.29 16.70 20 6.67 4.12 10.11 3.50 11.27 20 5.00 3.08 7.62 2.62 8.51 

21 10.50 6.62 15.60 5.66 17.30 21 7.00 4.39 10.50 3.75 11.68 21 5.25 3.28 7.91 2.80 8.82 

22 11.00 7.02 16.18 6.04 17.90 22 7.33 4.65 10.89 3.99 12.09 22 5.50 3.48 8.21 2.98 9.13 

23 11.50 7.43 16.75 6.42 18.50 23 7.67 4.92 11.28 4.24 12.50 23 5.75 3.68 8.50 3.17 9.43 

24 12.00 7.84 17.33 6.80 19.09 24 8.00 5.19 11.67 4.49 12.90 24 6.00 3.88 8.80 3.36 9.74 

25 12.50 8.26 17.90 7.18 19.68 25 8.33 5.47 12.06 4.75 13.30 25 6.25 4.09 9.09 3.54 10.04 

26 13.00 8.67 18.47 7.57 20.26 26 8.67 5.74 12.44 5.00 13.70 26 6.50 4.29 9.38 3.73 10.35 

27 13.50 9.09 19.03 7.96 20.85 27 9.00 6.01 12.82 5.26 14.10 27 6.75 4.50 9.67 3.92 10.65 

28 14.00 9.51 19.59 8.35 21.43 28 9.33 6.29 13.21 5.52 14.49 28 7.00 4.70 9.96 4.12 10.95 

29 14.50 9.93 20.16 8.75 22.00 29 9.67 6.57 13.59 5.78 14.89 29 7.25 4.91 10.25 4.31 11.25 

30 15.00 10.35 20.72 9.15 22.58 30 10.00 6.85 13.97 6.04 15.28 30 7.50 5.12 10.53 4.51 11.55 

31 15.50 10.78 21.27 9.55 23.15 31 10.33 7.13 14.35 6.30 15.67 31 7.75 5.33 10.82 4.70 11.84 

32 16.00 11.21 21.83 9.95 23.72 32 10.67 7.41 14.72 6.57 16.06 32 8.00 5.54 11.11 4.90 12.14 

33 16.50 11.64 22.38 10.36 24.29 33 11.00 7.69 15.10 6.83 16.45 33 8.25 5.75 11.39 5.10 12.44 

34 17.00 12.07 22.94 10.77 24.86 34 11.33 7.98 15.48 7.10 16.84 34 8.50 5.96 11.68 5.30 12.73 

35 17.50 12.50 23.49 11.18 25.42 35 11.67 8.26 15.85 7.37 17.23 35 8.75 6.17 11.96 5.50 13.02 

36 18.00 12.94 24.04 11.59 25.99 36 12.00 8.55 16.22 7.64 17.61 36 9.00 6.38 12.24 5.70 13.32 

37 18.50 13.37 24.59 12.00 26.55 37 12.33 8.83 16.60 7.91 18.00 37 9.25 6.60 12.52 5.90 13.61 

38 19.00 13.81 25.13 12.42 27.11 38 12.67 9.12 16.97 8.18 18.38 38 9.50 6.81 12.81 6.10 13.90 

39 19.50 14.25 25.68 12.84 27.66 39 13.00 9.41 17.34 8.45 18.76 39 9.75 7.03 13.09 6.30 14.19 

40 20.00 14.69 26.22 13.26 28.22 40 13.33 9.70 17.71 8.73 19.14 40 10.00 7.24 13.37 6.51 14.48 

41 20.50 15.13 26.77 13.68 28.77 41 13.67 9.99 18.08 9.00 19.52 41 10.25 7.46 13.65 6.71 14.77 

42 21.00 15.57 27.31 14.10 29.32 42 14.00 10.28 18.45 9.28 19.90 42 10.50 7.67 13.93 6.92 15.06 

43 21.50 16.02 27.85 14.53 29.87 43 14.33 10.57 18.82 9.56 20.28 43 10.75 7.89 14.21 7.12 15.34 

44 22.00 16.46 28.39 14.95 30.42 44 14.67 10.86 19.18 9.84 20.65 44 11.00 8.11 14.48 7.33 15.63 

45 22.50 16.91 28.92 15.38 30.97 45 15.00 11.16 19.55 10.12 21.03 45 11.25 8.33 14.76 7.54 15.92 

46 23.00 17.36 29.46 15.81 31.51 46 15.33 11.45 19.92 10.40 21.41 46 11.50 8.54 15.04 7.75 16.20 

47 23.50 17.81 30.00 16.24 32.06 47 15.67 11.74 20.28 10.68 21.78 47 11.75 8.76 15.32 7.96 16.49 

48 24.00 18.26 30.53 16.67 32.60 48 16.00 12.04 20.65 10.96 22.15 48 12.00 8.98 15.59 8.16 16.77 

49 24.50 18.71 31.06 17.11 33.14 49 16.33 12.33 21.01 11.24 22.53 49 12.25 9.20 15.87 8.37 17.05 

50 25.00 19.16 31.60 17.54 33.68 50 16.67 12.63 21.38 11.53 22.90 50 12.50 9.42 16.15 8.59 17.34 

60 30.00 23.74 36.86 21.97 39.01 60 20.00 15.62 24.98 14.40 26.58 60 15.00 11.65 18.88 10.72 20.14 

70 35.00 28.41 42.05 26.51 44.22 70 23.33 18.66 28.54 17.35 30.19 70 17.50 13.90 21.59 12.90 22.90 

80 40.00 33.15 47.15 31.16 49.33 80 26.67 21.75 32.05 20.34 33.75 80 20.00 16.19 24.26 15.11 25.62 

90 45.00 37.98 52.18 35.90 54.34 90 30.00 24.87 35.53 23.39 37.27 90 22.50 18.50 26.91 17.35 28.32 

100 50.00 42.87 57.13 40.74 59.26 100 33.33 28.02 38.98 26.47 40.74 100 25.00 20.83 29.54 19.63 30.98 

 125 41.67 36.03 47.47 34.35 49.25 125 31.25 26.74 36.04 25.41 37.55 

150 50.00 44.20 55.80 42.45 57.55 150 37.50 32.74 42.45 31.32 43.98 

 175 43.75 38.83 48.77 37.34 50.31 

200 50.00 44.99 55.01 43.47 56.53 
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Confidence intervals (%) for the binomial distribution (N = 500-700) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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95% 99% 95% 99% 95% 99% 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

N = 500  N = 600  N = 700 

0 0.00 0.00 0.74 0.00 1.05 0 0.00 0.00 0.61 0.00 0.88 0 0.00 0.00 0.53 0.00 0.75 

1 0.20 0.01 1.11 0.00 1.48 1 0.17 0.00 0.93 0.00 1.23 1 0.14 0.00 0.79 0.00 1.06 

2 0.40 0.05 1.44 0.02 1.84 2 0.33 0.04 1.20 0.02 1.54 2 0.29 0.03 1.03 0.01 1.32 

3 0.60 0.12 1.74 0.07 2.18 3 0.50 0.10 1.45 0.06 1.82 3 0.43 0.09 1.25 0.05 1.56 

4 0.80 0.22 2.04 0.13 2.50 4 0.67 0.18 1.70 0.11 2.08 4 0.57 0.16 1.46 0.10 1.79 

5 1.00 0.33 2.32 0.22 2.80 5 0.83 0.27 1.93 0.18 2.34 5 0.71 0.23 1.66 0.15 2.01 

6 1.20 0.44 2.59 0.31 3.10 6 1.00 0.37 2.16 0.26 2.59 6 0.86 0.32 1.86 0.22 2.22 

7 1.40 0.56 2.86 0.41 3.39 7 1.17 0.47 2.39 0.34 2.83 7 1.00 0.40 2.05 0.29 2.43 

8 1.60 0.69 3.13 0.52 3.68 8 1.33 0.58 2.61 0.43 3.07 8 1.14 0.49 2.24 0.37 2.63 

9 1.80 0.83 3.39 0.63 3.96 9 1.50 0.69 2.83 0.52 3.30 9 1.29 0.59 2.43 0.45 2.83 

10 2.00 0.96 3.65 0.75 4.23 10 1.67 0.80 3.04 0.62 3.53 10 1.43 0.69 2.61 0.53 3.03 

11 2.20 1.10 3.90 0.87 4.50 11 1.83 0.92 3.26 0.72 3.76 11 1.57 0.79 2.79 0.62 3.23 

12 2.40 1.25 4.15 0.99 4.77 12 2.00 1.04 3.47 0.83 3.98 12 1.71 0.89 2.98 0.71 3.42 

13 2.60 1.39 4.41 1.12 5.04 13 2.17 1.16 3.68 0.94 4.21 13 1.86 0.99 3.15 0.80 3.61 

14 2.80 1.54 4.65 1.25 5.30 14 2.33 1.28 3.88 1.04 4.42 14 2.00 1.10 3.33 0.89 3.80 

15 3.00 1.69 4.90 1.39 5.56 15 2.50 1.41 4.09 1.16 4.64 15 2.14 1.20 3.51 0.99 3.99 

16 3.20 1.84 5.14 1.52 5.82 16 2.67 1.53 4.29 1.27 4.86 16 2.29 1.31 3.69 1.09 4.17 

17 3.40 1.99 5.39 1.66 6.07 17 2.83 1.66 4.50 1.38 5.07 17 2.43 1.42 3.86 1.19 4.36 

18 3.60 2.15 5.63 1.80 6.33 18 3.00 1.79 4.70 1.50 5.29 18 2.57 1.53 4.03 1.29 4.54 

19 3.80 2.30 5.87 1.95 6.58 19 3.17 1.92 4.90 1.62 5.50 19 2.71 1.64 4.21 1.39 4.72 

20 4.00 2.46 6.11 2.09 6.83 20 3.33 2.05 5.10 1.74 5.71 20 2.86 1.75 4.38 1.49 4.90 

21 4.20 2.62 6.35 2.23 7.08 21 3.50 2.18 5.30 1.86 5.92 21 3.00 1.87 4.55 1.59 5.08 

22 4.40 2.78 6.59 2.38 7.33 22 3.67 2.31 5.50 1.98 6.12 22 3.14 1.98 4.72 1.70 5.26 

23 4.60 2.94 6.82 2.53 7.58 23 3.83 2.45 5.70 2.10 6.33 23 3.29 2.09 4.89 1.80 5.44 

24 4.80 3.10 7.06 2.68 7.82 24 4.00 2.58 5.89 2.23 6.54 24 3.43 2.21 5.06 1.91 5.61 

25 5.00 3.26 7.29 2.83 8.07 25 4.17 2.71 6.09 2.35 6.74 25 3.57 2.32 5.23 2.01 5.79 

26 5.20 3.42 7.53 2.98 8.31 26 4.33 2.85 6.29 2.48 6.95 26 3.71 2.44 5.40 2.12 5.97 

27 5.40 3.59 7.76 3.13 8.56 27 4.50 2.99 6.48 2.60 7.15 27 3.86 2.56 5.56 2.23 6.14 

28 5.60 3.75 7.99 3.28 8.80 28 4.67 3.12 6.67 2.73 7.35 28 4.00 2.67 5.73 2.34 6.31 

29 5.80 3.92 8.22 3.44 9.04 29 4.83 3.26 6.87 2.86 7.55 29 4.14 2.79 5.90 2.45 6.49 

30 6.00 4.08 8.45 3.59 9.28 30 5.00 3.40 7.06 2.99 7.76 30 4.29 2.91 6.06 2.56 6.66 

31 6.20 4.25 8.69 3.75 9.52 31 5.17 3.54 7.25 3.12 7.96 31 4.43 3.03 6.23 2.67 6.83 

32 6.40 4.42 8.92 3.91 9.76 32 5.33 3.68 7.45 3.25 8.16 32 4.57 3.15 6.39 2.78 7.01 

33 6.60 4.59 9.14 4.06 9.99 33 5.50 3.82 7.64 3.38 8.35 33 4.71 3.27 6.56 2.89 7.18 

34 6.80 4.75 9.37 4.22 10.23 34 5.67 3.96 7.83 3.51 8.55 34 4.86 3.39 6.72 3.01 7.35 

35 7.00 4.92 9.60 4.38 10.47 35 5.83 4.10 8.02 3.64 8.75 35 5.00 3.51 6.89 3.12 7.52 

36 7.20 5.09 9.83 4.54 10.70 36 6.00 4.24 8.21 3.78 8.95 36 5.14 3.63 7.05 3.23 7.69 

37 7.40 5.26 10.06 4.70 10.94 37 6.17 4.38 8.40 3.91 9.15 37 5.29 3.75 7.21 3.35 7.86 

38 7.60 5.43 10.28 4.86 11.17 38 6.33 4.52 8.59 4.04 9.34 38 5.43 3.87 7.38 3.46 8.03 

39 7.80 5.61 10.51 5.03 11.41 39 6.50 4.66 8.78 4.18 9.54 39 5.57 3.99 7.54 3.58 8.19 

40 8.00 5.78 10.73 5.19 11.64 40 6.67 4.81 8.97 4.31 9.73 40 5.71 4.11 7.70 3.69 8.36 

41 8.20 5.95 10.96 5.35 11.87 41 6.83 4.95 9.16 4.45 9.93 41 5.86 4.24 7.86 3.81 8.53 

42 8.40 6.12 11.18 5.51 12.11 42 7.00 5.09 9.34 4.58 10.12 42 6.00 4.36 8.02 3.92 8.70 

43 8.60 6.29 11.41 5.68 12.34 43 7.17 5.23 9.53 4.72 10.32 43 6.14 4.48 8.19 4.04 8.86 

44 8.80 6.47 11.63 5.84 12.57 44 7.33 5.38 9.72 4.86 10.51 44 6.29 4.60 8.35 4.16 9.03 

45 9.00 6.64 11.86 6.01 12.80 45 7.50 5.52 9.91 4.99 10.70 45 6.43 4.73 8.51 4.27 9.20 

46 9.20 6.81 12.08 6.17 13.03 46 7.67 5.67 10.09 5.13 10.90 46 6.57 4.85 8.67 4.39 9.36 

47 9.40 6.99 12.30 6.34 13.26 47 7.83 5.81 10.28 5.27 11.09 47 6.71 4.97 8.83 4.51 9.53 

48 9.60 7.16 12.53 6.51 13.49 48 8.00 5.96 10.47 5.41 11.28 48 6.86 5.10 8.99 4.63 9.70 

49 9.80 7.34 12.75 6.67 13.72 49 8.17 6.10 10.65 5.55 11.47 49 7.00 5.22 9.15 4.74 9.86 

50 10.00 7.51 12.97 6.84 13.95 50 8.33 6.25 10.84 5.68 11.67 50 7.14 5.35 9.31 4.86 10.03 

60 12.00 9.28 15.18 8.53 16.21 60 10.00 7.72 12.68 7.09 13.56 60 8.57 6.60 10.90 6.06 11.66 

70 14.00 11.08 17.35 10.26 18.44 70 11.67 9.21 14.51 8.52 15.43 70 10.00 7.88 12.47 7.29 13.27 

80 16.00 12.90 19.51 12.02 20.65 80 13.33 10.72 16.32 9.98 17.28 80 11.43 9.17 14.02 8.53 14.86 

90 18.00 14.73 21.65 13.80 22.83 90 15.00 12.24 18.11 11.45 19.12 90 12.86 10.47 15.57 9.79 16.44 

100 20.00 16.58 23.78 15.60 24.99 100 16.67 13.77 19.89 12.94 20.93 100 14.29 11.78 17.10 11.06 18.01 

125 25.00 21.26 29.04 20.17 30.31 125 20.83 17.65 24.31 16.73 25.41 125 17.86 15.09 20.90 14.29 21.87 

150 30.00 26.01 34.23 24.83 35.55 150 25.00 21.58 28.67 20.58 29.83 150 21.43 18.44 24.66 17.57 25.68 

175 35.00 30.82 39.36 29.57 40.72 175 29.17 25.56 32.98 24.49 34.18 175 25.00 21.83 28.38 20.90 29.45 

200 40.00 35.68 44.44 34.38 45.82 200 33.33 29.57 37.26 28.44 38.49 200 28.57 25.25 32.07 24.26 33.18 

225 45.00 40.58 49.48 39.24 50.86 225 37.50 33.61 41.51 32.44 42.76 225 32.14 28.69 35.74 27.66 36.87 

250 50.00 45.53 54.47 44.16 55.84 250 41.67 37.69 45.73 36.48 46.98 250 35.71 32.16 39.39 31.09 40.54 

 275 45.83 41.79 49.92 40.56 51.17 275 39.29 35.65 43.01 34.55 44.17 

300 50.00 45.92 54.08 44.68 55.32 300 42.86 39.16 46.62 38.03 47.78 

 325 46.43 42.68 50.20 41.54 51.37 

350 50.00 46.23 53.77 45.07 54.93 
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Confidence intervals (%) for the binomial distribution (N = 600-1000) 
See Appendixes B & C for the method of calculation and how to interpolate or extrapolate for limits not contained in the table 
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Confidence intervals 
95% 99% 95% 99% 95% 99% 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

N = 800  N = 900  N = 1000 

0 0.00 0.00 0.46 0.00 0.66 0 0.00 0.00 0.41 0.00 0.59 0 0.00 0.00 0.37 0.00 0.53 

1 0.13 0.00 0.69 0.00 0.93 1 0.11 0.00 0.62 0.00 0.82 1 0.10 0.00 0.56 0.00 0.74 

2 0.25 0.03 0.90 0.01 1.15 2 0.22 0.03 0.80 0.01 1.03 2 0.20 0.02 0.72 0.01 0.92 

3 0.38 0.08 1.09 0.04 1.37 3 0.33 0.07 0.97 0.04 1.21 3 0.30 0.06 0.87 0.03 1.09 

4 0.50 0.14 1.28 0.08 1.57 4 0.44 0.12 1.13 0.07 1.39 4 0.40 0.11 1.02 0.07 1.25 

5 0.63 0.20 1.45 0.13 1.76 5 0.56 0.18 1.29 0.12 1.56 5 0.50 0.16 1.16 0.11 1.41 

6 0.75 0.28 1.63 0.19 1.95 6 0.67 0.25 1.45 0.17 1.73 6 0.60 0.22 1.30 0.15 1.56 

7 0.88 0.35 1.79 0.26 2.13 7 0.78 0.31 1.60 0.23 1.89 7 0.70 0.28 1.44 0.20 1.70 

8 1.00 0.43 1.96 0.32 2.31 8 0.89 0.38 1.74 0.29 2.05 8 0.80 0.35 1.57 0.26 1.85 

9 1.13 0.52 2.12 0.39 2.48 9 1.00 0.46 1.89 0.35 2.21 9 0.90 0.41 1.70 0.31 1.99 

10 1.25 0.60 2.29 0.47 2.66 10 1.11 0.53 2.03 0.41 2.36 10 1.00 0.48 1.83 0.37 2.13 

11 1.38 0.69 2.45 0.54 2.83 11 1.22 0.61 2.18 0.48 2.51 11 1.10 0.55 1.96 0.43 2.26 

12 1.50 0.78 2.61 0.62 3.00 12 1.33 0.69 2.32 0.55 2.66 12 1.20 0.62 2.09 0.50 2.40 

13 1.63 0.87 2.76 0.70 3.16 13 1.44 0.77 2.46 0.62 2.81 13 1.30 0.69 2.21 0.56 2.53 

14 1.75 0.96 2.92 0.78 3.33 14 1.56 0.85 2.60 0.69 2.96 14 1.40 0.77 2.34 0.63 2.67 

15 1.88 1.05 3.07 0.87 3.49 15 1.67 0.94 2.73 0.77 3.11 15 1.50 0.84 2.46 0.69 2.80 

16 2.00 1.15 3.23 0.95 3.65 16 1.78 1.02 2.87 0.84 3.25 16 1.60 0.92 2.59 0.76 2.93 

17 2.13 1.24 3.38 1.04 3.82 17 1.89 1.10 3.01 0.92 3.39 17 1.70 0.99 2.71 0.83 3.06 

18 2.25 1.34 3.53 1.12 3.98 18 2.00 1.19 3.14 1.00 3.54 18 1.80 1.07 2.83 0.90 3.19 

19 2.38 1.44 3.68 1.21 4.14 19 2.11 1.28 3.28 1.08 3.68 19 1.90 1.15 2.95 0.97 3.31 

20 2.50 1.53 3.83 1.30 4.29 20 2.22 1.36 3.41 1.16 3.82 20 2.00 1.23 3.07 1.04 3.44 

21 2.63 1.63 3.98 1.39 4.45 21 2.33 1.45 3.54 1.24 3.96 21 2.10 1.30 3.19 1.11 3.57 

22 2.75 1.73 4.13 1.48 4.61 22 2.44 1.54 3.68 1.32 4.10 22 2.20 1.38 3.31 1.18 3.69 

23 2.88 1.83 4.28 1.57 4.76 23 2.56 1.63 3.81 1.40 4.24 23 2.30 1.46 3.43 1.26 3.82 

24 3.00 1.93 4.43 1.67 4.92 24 2.67 1.72 3.94 1.48 4.38 24 2.40 1.54 3.55 1.33 3.94 

25 3.13 2.03 4.58 1.76 5.07 25 2.78 1.81 4.07 1.56 4.52 25 2.50 1.62 3.67 1.41 4.07 

26 3.25 2.13 4.73 1.85 5.23 26 2.89 1.90 4.20 1.65 4.65 26 2.60 1.71 3.79 1.48 4.19 

27 3.38 2.24 4.87 1.95 5.38 27 3.00 1.99 4.33 1.73 4.79 27 2.70 1.79 3.90 1.56 4.31 

28 3.50 2.34 5.02 2.04 5.53 28 3.11 2.08 4.47 1.82 4.92 28 2.80 1.87 4.02 1.63 4.44 

29 3.63 2.44 5.16 2.14 5.69 29 3.22 2.17 4.60 1.90 5.06 29 2.90 1.95 4.14 1.71 4.56 

30 3.75 2.54 5.31 2.24 5.84 30 3.33 2.26 4.72 1.99 5.20 30 3.00 2.03 4.26 1.79 4.68 

31 3.88 2.65 5.46 2.33 5.99 31 3.44 2.35 4.85 2.07 5.33 31 3.10 2.12 4.37 1.86 4.80 

32 4.00 2.75 5.60 2.43 6.14 32 3.56 2.44 4.98 2.16 5.46 32 3.20 2.20 4.49 1.94 4.92 

33 4.13 2.86 5.74 2.53 6.29 33 3.67 2.54 5.11 2.25 5.60 33 3.30 2.28 4.60 2.02 5.04 

34 4.25 2.96 5.89 2.63 6.44 34 3.78 2.63 5.24 2.33 5.73 34 3.40 2.37 4.72 2.10 5.16 

35 4.38 3.07 6.03 2.73 6.59 35 3.89 2.72 5.37 2.42 5.86 35 3.50 2.45 4.83 2.18 5.28 

36 4.50 3.17 6.18 2.83 6.74 36 4.00 2.82 5.49 2.51 6.00 36 3.60 2.53 4.95 2.26 5.40 

37 4.63 3.28 6.32 2.92 6.89 37 4.11 2.91 5.62 2.60 6.13 37 3.70 2.62 5.06 2.34 5.52 

38 4.75 3.38 6.46 3.02 7.03 38 4.22 3.00 5.75 2.69 6.26 38 3.80 2.70 5.18 2.42 5.64 

39 4.88 3.49 6.60 3.12 7.18 39 4.33 3.10 5.88 2.78 6.39 39 3.90 2.79 5.29 2.50 5.76 

40 5.00 3.60 6.75 3.23 7.33 40 4.44 3.19 6.00 2.86 6.52 40 4.00 2.87 5.41 2.58 5.88 

41 5.13 3.70 6.89 3.33 7.48 41 4.56 3.29 6.13 2.95 6.66 41 4.10 2.96 5.52 2.66 6.00 

42 5.25 3.81 7.03 3.43 7.62 42 4.67 3.38 6.26 3.04 6.79 42 4.20 3.04 5.64 2.74 6.11 

43 5.38 3.92 7.17 3.53 7.77 43 4.78 3.48 6.38 3.13 6.92 43 4.30 3.13 5.75 2.82 6.23 

44 5.50 4.02 7.31 3.63 7.92 44 4.89 3.57 6.51 3.22 7.05 44 4.40 3.21 5.86 2.90 6.35 

45 5.63 4.13 7.45 3.73 8.06 45 5.00 3.67 6.63 3.32 7.18 45 4.50 3.30 5.98 2.98 6.47 

46 5.75 4.24 7.60 3.84 8.21 46 5.11 3.77 6.76 3.41 7.31 46 4.60 3.39 6.09 3.06 6.58 

47 5.88 4.35 7.74 3.94 8.35 47 5.22 3.86 6.88 3.50 7.44 47 4.70 3.47 6.20 3.15 6.70 

48 6.00 4.46 7.88 4.04 8.50 48 5.33 3.96 7.01 3.59 7.57 48 4.80 3.56 6.31 3.23 6.82 

49 6.13 4.57 8.02 4.15 8.64 49 5.44 4.05 7.13 3.68 7.70 49 4.90 3.65 6.43 3.31 6.93 

50 6.25 4.67 8.16 4.25 8.79 50 5.56 4.15 7.26 3.77 7.82 50 5.00 3.73 6.54 3.39 7.05 

60 7.50 5.77 9.55 5.30 10.22 60 6.67 5.13 8.50 4.70 9.10 60 6.00 4.61 7.66 4.23 8.20 

70 8.75 6.88 10.93 6.37 11.64 70 7.78 6.11 9.72 5.65 10.36 70 7.00 5.50 8.76 5.08 9.34 

80 10.00 8.01 12.29 7.45 13.04 80 8.89 7.11 10.94 6.61 11.61 80 8.00 6.39 9.86 5.94 10.47 

90 11.25 9.14 13.65 8.55 14.42 90 10.00 8.12 12.15 7.59 12.85 90 9.00 7.30 10.95 6.82 11.58 

100 12.50 10.29 14.99 9.66 15.80 100 11.11 9.13 13.35 8.57 14.07 100 10.00 8.21 12.03 7.70 12.69 

125 15.63 13.18 18.33 12.47 19.20 125 13.89 11.70 16.32 11.06 17.11 125 12.50 10.51 14.71 9.94 15.42 

150 18.75 16.10 21.63 15.33 22.55 150 16.67 14.29 19.27 13.60 20.10 150 15.00 12.84 17.37 12.21 18.13 

175 21.88 19.06 24.90 18.23 25.87 175 19.44 16.91 22.18 16.16 23.06 175 17.50 15.19 20.00 14.52 20.80 

200 25.00 22.03 28.15 21.15 29.15 200 22.22 19.55 25.08 18.75 25.99 200 20.00 17.56 22.62 16.84 23.45 

225 28.13 25.03 31.38 24.11 32.41 225 25.00 22.20 27.96 21.37 28.90 225 22.50 19.95 25.22 19.19 26.08 

250 31.25 28.05 34.59 27.09 35.64 250 27.78 24.87 30.83 24.00 31.79 250 25.00 22.34 27.80 21.55 28.69 

275 34.38 31.08 37.78 30.09 38.85 275 30.56 27.56 33.68 26.66 34.66 275 27.50 24.75 30.38 23.93 31.29 

300 37.50 34.13 40.96 33.11 42.04 300 33.33 30.26 36.52 29.33 37.52 300 30.00 27.17 32.95 26.32 33.87 

325 40.63 37.20 44.12 36.16 45.21 325 36.11 32.97 39.35 32.01 40.36 325 32.50 29.60 35.50 28.73 36.44 

350 43.75 40.28 47.27 39.22 48.36 350 38.89 35.69 42.16 34.72 43.18 350 35.00 32.04 38.05 31.14 39.00 

375 46.88 43.37 50.40 42.30 51.49 375 41.67 38.42 44.97 37.43 45.99 375 37.50 34.49 40.58 33.57 41.55 

400 50.00 46.48 53.52 45.40 54.60 400 44.44 41.17 47.76 40.16 48.79 400 40.00 36.95 43.11 36.02 44.08 

 425 47.22 43.92 50.54 42.90 51.57 425 42.50 39.41 45.63 38.47 46.61 

450 50.00 46.68 53.32 45.66 54.34 450 45.00 41.89 48.14 40.93 49.12 

 475 47.50 44.37 50.65 43.40 51.62 

500 50.00 46.85 53.15 45.89 54.11 

____________ 
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Appendix 2 
How to calculate exact binomial confidence limits 

Exact binomial confidence limits are calculated as follows:29 
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where CL = confidence level as a proportion (for a 95% confidence level CL should be 
expressed as 0.95) 

LCL & UCL are the lower and upper confidence limits respectively 

r = the number of successes in N trials 

____________ 

                                                 
29 Daly S. Simple SAS macros for the calculation of exact binomial and Poisson confidence limits. Comput. Biol. Med., 22, 351-361, 1992 
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Appendix 3 
Calculating binomial confidence limits not contained in 
Appendix 1 

The following methods enable exact binomial confidence limits to be interpolated or 
extrapolated from the tables in Appendix 1: 

1. If r is greater than the tabulated values in a particular column of N  

Look up the corresponding values of the confidence intervals for N-r. The required 
confidence intervals are calculated as follows: 

LCI = 100-UCI(N-r)  Equation 1 

UCI = 100-LCI(N-r)  Equation 2 

where: LCI = lower confidence level and 
UCI = upper confidence interval 

For example, to interpolate the 95% confidence intervals where N = 21 and r = 15, look 
up the corresponding values of the confidence intervals for N-r = 21-15 = 6. LCI = 100-
52.18 = 47.82, UCI = 100-11.28 = 88.72. 

2. If r is lies between two values in a particular column of N (r1 < r < r2) 

Calculate 100
N

r
pr , then look up the corresponding p values for r1 and r2. The required 

confidence intervals can then be calculated by applying the following formula: 

  12
12

1
1 rr

rr

rr
r CICI

pp

pp
CI 




  Equation 3 

For example, to interpolate the 95% confidence intervals where N = 200 and r = 85, 

calculate 5.42
200

85
100 

N

r
pr , look up the corresponding p values and confidence 

intervals for 80 and 90 and insert them into the formula: 

  56.3515.3398.37
00.4000.45

00.4050.42
15.33 




LCI  

  67.4915.4718.52
00.4000.45

00.4050.42
15.47 




UCI  

3. If N lies between two columns of N (N1 < N < N2) 

Calculate 100
N

r
pr , then look up the corresponding confidence limits for p1 and p2 

where p1 < pr < p2 for N1 and N2 respectively. Next, determine the interpolated confidence 
limits for pr for both N1 and N2 as in Equation 3. Finally, the required confidence intervals 
can be calculated by applying the following formula: 

  
lowerprupperprlowerpr

CICI
NN

NN
CI 


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
12

1

1
 Equation 4 

For example, to interpolate the 95% confidence intervals for N = 270 and r = 22 where N 

lies between N1 = 200 and N2 = 300, firstly calculate 15.8100 
N

r
pr then look up the 

corresponding p values for p1 and p2 where p1 < pr < p2 for N1 and N2 respectively and apply 
Equation 3: 
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N2 = 300 interpolated 

  32.519.547.5
00.833.8

00.815.8
19.5 



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00.833.8

00.815.8
67.111 


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N1 = 200 interpolated 

  76.464.403.5
00.850.8

00.815.8
64.4 




LCI    85.1267.1226.13
00.850.8
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

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Insert the interpolated confidence limits into Equation 4: 

   15.576.432.5
200300

200270
76.4 




LCI    15.1285.1285.11
200300
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
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4. If N is greater than 1,000 

Calculate 100
N

r
pr , then look up the corresponding confidence limits for pr and apply 

the following formulae: 

 
N

LCIppLCI prrr

1000
  Equation 5 

 
N

pUCIpUCI rprr

1000
  Equation 6 

For example, to extrapolate the 95% confidence intervals for N = 3000 and r = 54 

calculate 80.1100 
N

r
pr  then look up the lower and upper confidence limits for pr = 

1.80 and insert them into Equations 5 and 6 respectively: 

   38.1
3000

1000
07.180.180.1 LCI    4.2

3000

1000
80.184.280.1 UCI  

____________ 
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